ACC Corrosion/FAC A Perspective as Introduction to Session 4: Chemistry and Corrosion

Third Annual ACC Users Group San Francisco, California 19th and 20th September 2011

Barry Dooley

Corrosion/FAC in ACC and The Consequences

- High concentrations of iron around the cycle
 - Boiler/HRSG deposits
 - Boiler/HRSG Tube Failures
 - Steam Turbine Deposits
- Need for Iron Removal Processes
 - Condensate Polishing and/or Filters
- Limitations around the cycle
 - Condensate polishing
- Overall an ACC "controls" the unit cycle chemistry
 - International Guidelines didn't consider ACC or two-phase flow up to 2010 (IAPWS Volatile Guidance)

And we have an ACC Corrosion Index to Categorize Corrosion and Track Improvments

DHAC

(<u>D</u>ooley, <u>H</u>owell, <u>A</u>ir-cooled Condenser, <u>C</u>orrosion <u>Index</u>)

We Know what the Corrosion Looks Like

And what Holes at Tube Entries Look Like

DHACI 5

Inside diameter surface of an ACC Tube The black areas are where the Fe₃O₄ is Precipitated Locally

Corroded (FAC?) ID Surface of ACC Tube

ID Oxide

Scale

Oxide free area with preferential grain boundary attack

Associates, Inc.

6 inch section of ACC tube and detail of the surface showing black deposits and white "bare" metal areas

But do we Understand the Environment and the Corrosion Mechanism?

Solutions are already being applied

Increase bulk pH up to 9.8 Increase local pH (amines) Coatings (epoxy), Sleeves, Inserts Materials Designs?

To Understand the Corrosion Here we need to Understand the Environment in the PTZ

The PTZ Environment in the LP Steam Turbine is Completely Understood

Generation of the ACC Environment

Heterogeneous droplet Nucleation and Liquid Films on ST Blades (Droplets and Liquid Films in the ACC don't contain any oxygen until during shutdown)

The Liquid in ACC Upper Ducts

Chloride

Courtesy Setsweke Phala, Eskom

The Liquid in ACC Upper Ducts

Structural Integrity Associates, Inc.

Courtesy Setsweke Phala, Eskom

So is the ACC Corrosion Mechanism Low Temperature FAC?

Dependent on Removing the Saturation of Fe₃O₄ at the Surface and Precipitating it Adjacently

Dooley, PPChem 2008

200 µm

Structural Integrity Associates, Inc.

Or is the ACC Corrosion Mechanism Something Other than FAC?

and if so Why does the Dooley/Aspden Relationship Work ?

Dooley/Aspden pH Versus Iron Relationship

Dooley, Aspden, Howell & DuPreez, PPChem 2009

In Summary

- Some aspects relate to Low Temperature FAC
 - Adjacent black and white areas in severe turbulent areas
 - Increasing pH reduces damage
- Some aspects don't (normal FAC scalloped appearance)
- Environment is known and has been measured
 - Two-phase mixture formed in PTZ of ST
 - Concentrating liquids (Higher in chloride/sulphate, organics)
 - Lower in pH
- Clearly more tubes need to be analyzed
- Clearly we need to provide solutions which address the mechanism

