

Kogan Creek Power Station

Kogan Creek Power Station :

- 750MW single unit coal fired power plant
- Supercritical Benson type boiler
- Direct Air Cooled
- Commissioning completed in December 2007
- Located near Chinchilla, Queensland, Australia

<section-header> Air Cooled Condenser GEA Alex (Aluminium Exchanger design Single tube row Carbon steel tubes with aluminised exterior Aluminium cooling fins 48 off 9m diameter fans (200kW motors) Steam Flow: 413.8kg/s full load, 457.2kg/s Overload

Design Chemistry

- Oxygenated Treatment (80ppb)
- pH 8.0 8.5
- Ammonium Hydroxide to control pH
- Hydrogen cycle mixed bed condensate polishing
- Condensate filtration
- Concerns were held that the design chemistry was not suitable for the unit, alternate chemistry program proposed but not implemented (lack of ACC specific chemistry
 - guidelines at the time to support concerns)

Actions

energy

- Increase in feedwater/condensate pH to reduce 2 phase FAC in the ACC – initially to 9.5 and then to 9.8
- Operate condensate polishers in ammonium form to allow practical operation at elevated pH
- Replace condensate filter elements with a more suitable design
- Allow operation of condensate polishers at elevated temperature (above 62.5C) until condensate filters are replaced

Results

energy

- Increasing the pH of the feedwater/condensate led to a significant reduction in corrosion in the ACC.
- Several months needed to observe the full benefit of increasing the pH
- Replacement of the condensate filter elements resulted in an immediate and drastic improvement in corrosion product transport
- Operation of deep mixed bed, ammonium form condensate polishers at high
 - temperatures (up to 70C) is possible, performance is reduced however

Observations

- Corrosion damage in the ACC very severe after just 4000hrs of operation (pH ~9.0).
- Increasing pH takes months to realise full benefits
- Corrosion damage still evident in ACC after >2 years operation at pH ~9.8, appearance continuing to improve over time.
- Application of oxygenated water to tube inlets appears to protect from FAC experienced in ACC at the tube inlets, but not further down the tube (Unit make-up water sprayed into

Boiler Tube Deposits		
Tube Location	Inner Layer (µm) (Indigenous oxide)	Outer Layer (µm) (Deposited Material)
Spiral Waterwall FL23800 FS	2.5	7.5
Spiral Waterwall FL23800 NFS	3.7	7.2
Spiral Waterwall FL30300 FS	2.0	11.8
Spiral Waterwall FL30300 NFS	8.2	24.7
FL38700 FS	33.8	86.3
FL38700 NFS	2.8	65.6
FL42000 FS	2.5	22.9
FL42000 NFS	4.2	25.8
energy		

Consequences

- Significant boiler tube deposition identified during the plants 8000hr outage (October 2008)
- Boiler chemical clean conducted to remove deposits (August 2009)
- Significant deposits of Iron confirmed on late and final stages of the HP turbine (August 2011)
- Significant Iron deposits not found at IP and LP turbine inlets or exhausts (August 2011)

