AIR COOLED STEAM CONDENSER TEST LABORATORY

Jean-Pierre Libert, Mark Huber – Evapco Dr. Dong Zhaoyi – Beijing Longyuan Cooling Technology

Why test the heat exchangers?
Small scale water testing
Small scale steam testing
Large scale steam testing
Product improvements

Outline

The thermal performance of the ACC has a direct impact on the power generation.

Temperatures and pressures inside the ACC must be predicted accurately to meet or exceed the forecast power generation.

Why Test the HX?

 ACC are the largest power consumers in a power plant.
 It is important to find ways to reduce the parasitic power losses due to the ACC.

Why Test the HX?

© Computation of heat transfer in the steam HX has 3 main components:

- 1. Condensation inside the tube.
- 2. Conduction through the tube wall and the fins.
- 3. Convection between the fins and the cooling air.

Heat Transfer Knowledge

Relatively quick and easy method to find the air side heat transfer coefficient.
Test small scale HX in a wind tunnel.
Heated water flows inside the tubes.
Measure water and air temperatures, flows, air-side pressure drop.

Small Scale Water Test

6' x 8' HX in Wind Tunnel

- ℵ The changing temperature of water along the tube length is not representative of ACC conditions.
- Reprovides no information on the condensation heat transfer inside the tube.

Water Test Shortcomings

- Shorter tubes have less condensing capacity than longer tubes.
- Less condensing capacity equates to lower liquid and vapor flow rates in the shorter tubes.
- ✤ The internal heat transfer coefficient and the pressure drop are dependent upon the liquid and vapor flow rates.
- Small scale testing does not experimentally represent the heat transfer coefficients or the internal pressure drops that occur in full scale tubes.

Small Scale Steam Testing

Design Goals ø Test large scale ACC HX condensing steam.

A wide range of operating conditions.
Configurations of interest.
Accurately measure ACC thermal performance.

Large Scale Air Cooled Steam Condenser Lab # HX Width up to 2.4 m (8 ft).
HX Length up to 11 m (35 ft).
Generation capability of over 1.3 kg/s (10,000 lb/hr) of saturated steam under vacuum at temperatures up to 65°C (150°F).

Test Large Scale ACC HX Condensing Steam ø Inlet air temperature: -12 to 49 °C (10 to 120 °F).
ø Inlet air velocity: up to 4 m/s (800 FPM).

A Wide Range of Operating Conditions (Air Side)

Wind Tunnel With Inlet Air Temperature Control

ø Condensing Pressure: 50 to 260 mbara (1.5 to 7.7 inHga)

- ø Steam Load: 0.13 to 1.3 kg/s (1000 to 10000 lb/hr)

A Wide Range of Operating Conditions (Steam Side)

Steam Loop (Simplified)

ø^{1st} Stage Configuration (Concurrent Flow, K or condenser cell) with variable 2nd Stage capacity.

Configurations of Interest

1st Stage Configuration: Concurrent Flow

Steam Loop 1st Stage Config.

ø 2nd Stage Configuration (Counter-Flow , dephlegmator or reflux cell)

Configurations of Interest

To Vacuum System

Vapor from Bottom of 1st Stage Condenser

Liquid to Receiver

2nd Stage Configuration: Counter-Flow

Steam Loop 2nd Stage Config

ø Installation Angle: 50 degrees to 70 degrees

Configurations of Interest

Installation Angle

Measurements:

- ø Boiler Water Flow & Temperatures.
- *σ* Steam Temperature and Pressure (HX In & Out).
- *α* Air Temperature and Pressure (HX In & Out).
- ø HX Condensate Flow Rate, Pressure, and Temperature.
- ø Air Flow Rate and Velocity Profile.

Accurately Measure ACC Thermal Performance Analysis & Heat Balances:
Ø Boiler Load Calculation (Total Load)
Ø HX Steam Side Load Calculation
Ø HX Air Side Load Calculation
Ø Surface Condenser Steam Side Load Calculation (Steam vapor velocity at outlet of HX tubes).

ଟ୍ଟ Surface Condenser Water Side Load Calculation.

Accurately Measure ACC Thermal Performance

Plan View of the Lab

3D View

Steam Lab Completed

Steam Kettle, ACC HX

Boiler & Control Rooms

øTube Geometry

øFin Geometry

øMaterials of Construction

Product Improvements

Air leakage and freeze prevention: Ø Optimize the 1st stage /2nd stage ratio considering thermal performance and freeze prevention by studying the effects of injecting controlled flow rates of non-condensable gases.

Product Improvements

Erosion, corrosion:

- The lab is capable of generating low
 pressure high velocity steam under
 controlled conditions.
- ø Possible to study the causes of FAC and test solutions?

Product Improvements

Evapco has designed, built and commissioned a unique test lab to investigate ACC heat exchangers.
 One of a kind test lab with ability to test full size heat exchangers condensing steam under vacuum ... conditions typically found in power plants.

Conclusions

& Ability to test and analyze multiple configurations.

Conclusions

Thank you!