

Suitability of Direct Drive Motor Technology as applied to ACC's

Bill Martin & Tom Weinandy

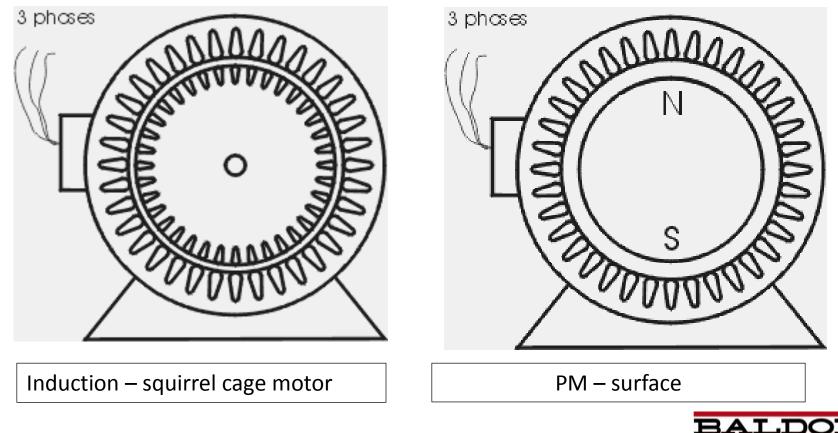
Agenda

Refresher from last year – high points

- > What is the technology
- > Installations to date

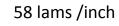
Common Questions

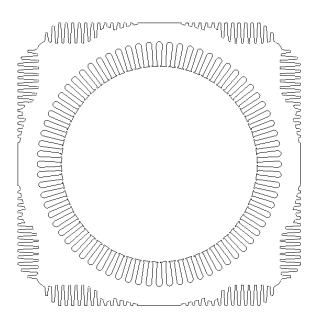
- > Motor Sizing
- > VFD benefits


What is different about the ACC application

- > Motor design today/future
- > Protecting your investment

How do PM motors differ from Induction Motors?


Same:	stator, rotor diameter, 3 phase power
Different: Induction has slip, PM is synchronous	
	PM has no rotor losses, therefore – more efficient
	Induction is line start, PM requires drive or other
	means to start



A MEMBER OF THE ABB GROUP

Improvements in Motor Technology Finned-Laminated Frame Construction & PM Technology

- Addition of Cooling Fins Increases the Surface Area
 - for Heat Dissipation
- Typical Power Increase from 20-25% Over Smooth Lamination
- Rotor losses eliminated

Background New Solution – Direct Drive

Slow Speed, Permanent Magnet Motor

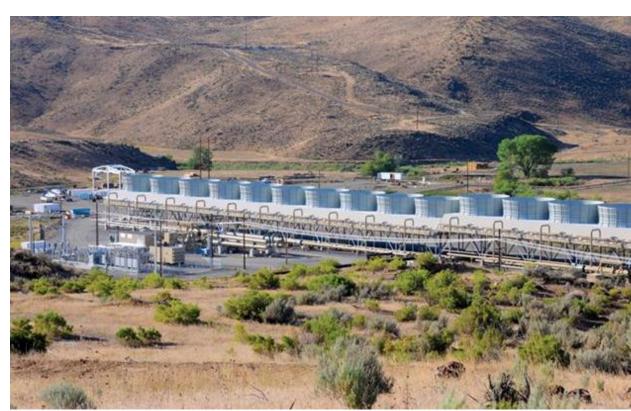
Replaces Induction Motor, Gearbox, Drive Shaft, Couplings

Designed for the Harsh Environment

EQUIVALENT RATING 200 HP, 120 RPM, 8753 lb-ft Both Motors Direct Drive – no gearbox

Motor Type	Height (in.)	Width (in.)	Wt. (lbs.)
Cast Iron Frame Induction	61	54	18685
Finned, Laminated Frame Permanent Magnet	50.47	37	7900

Note Reduced Height and Weight of Finned, Laminated Frame PM Motor


Installations

Application	Units	HP	
Industrial	114	10-200	
School/University/Hospital	93	15-100	
Commercial	86	40-125	
Geothermal/Power Gen	52	30-200	
Other	12	75-175	
113 Field Installation 357 Physical Cells		MAP LEC Commerce Buildings Universiti Paper Pro Power Ge Petrochen Pharmace Food & B Chemicals Fertilizer	ial es ducts neration nical utical everage
	Provent la	EMBER OF THE AE	

Installations

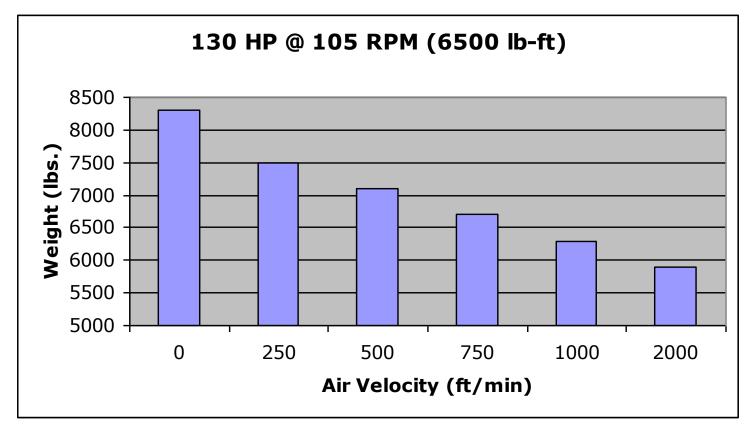
Motor Sizing Know the Load

- Example (Traditional Method)
 - Fan BHP = 133 at 100 rpm
 - > Add loss for speed reducer
 - 133 * 1.05 = 140 HP
 - > Select NEMA motor > calculated HP

		1800	1200	900
		1800	1200	900
		1800	1200	900
		1800	1200	900
		1800	1200	900
		1800	1200	900
		1800	1200	900
	125	1800	1200	900
1	150	1800	1200	900
l	200	1800	1200	900
	200	1800	1200	900
	300	1800	1200	900

- Example (Direct Drive)
 - Fan BHP = 133 @ 100 rpm
 - > No speed reducer loss

133 * 1.0 = 133 HP


Options for 133 HP, 100 rpm Direct Drive, 250 ft/min air velocity

HP		Weight (lbs.)
	48.47	7500
	50.47	7900
	52.47	8300
	52.47*	8300*

* Requires 1000 ft/min

Motor Sizing Air Velocity

Cooling Air Is Provided By The Cooling Tower Fan Itself

The Higher The Air Velocity, The Smaller The Motor

Smaller Motors Result In Lower Initial Installation Costs

Motor Sizing Increasing Air Velocity

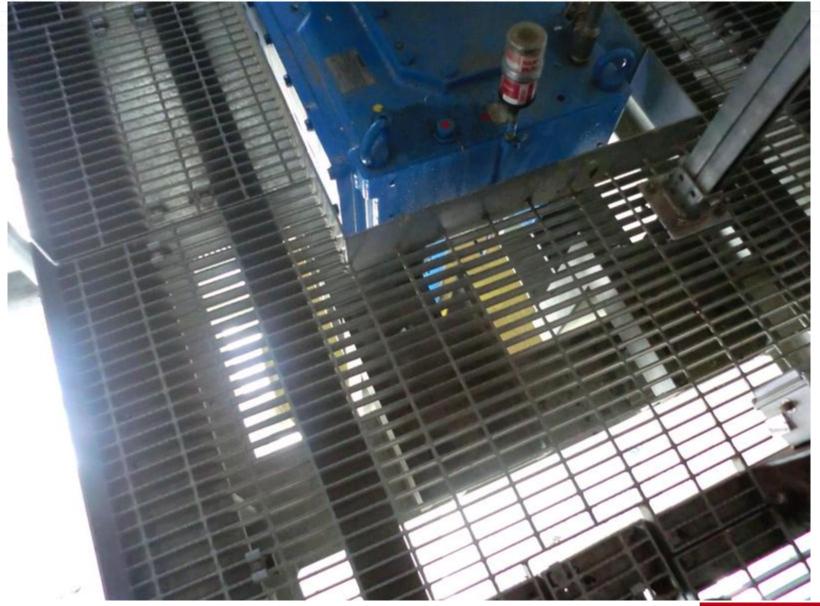
Airflow Testing

Airflow Testing: (Reference Appendix G)

- Using a Hot Wire Anemometer we measured airflow at various locations around the Fan and existing motor.
- The motor was running at Low Speed (Fan RPM = 48.5), so the high speed air velocity will be calculated knowing that there is linear relationship between rpm and air velocity

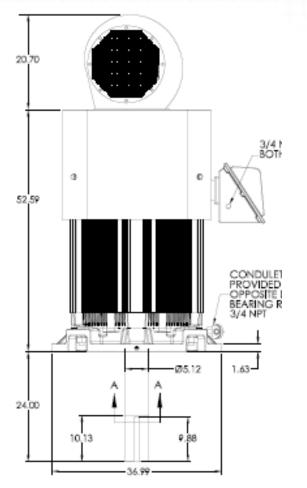
	Measured Low Speed	Calculated High Speed		
Distance from	Air Velocity	Air Velocity		
Fan Blade Tip (ft)	Average (ft/min)	Average (ft/min)		
0'	388	775		
6'	615	1230		
9'	550	1100		
12'	250	500		
At Seal Disk	140	280		
Where motor				
would be mounted	100	200		

Note: Open grating design



VFD Benefits

- Energy Savings
- Acts as a space heater
- Provides sensor less control (reliability)
- Brake
- RTD Feedback
- Resonance avoidance
- Reduced transient torque / starting current



ACC Drive Motor (today)

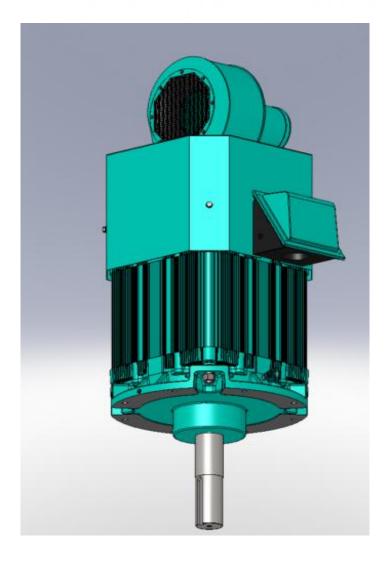
- Blower cooled in order to meet high torque ratings (12,000 ftlb2). Air flow switch is provided for protection against loss of air flow.
- Class H materials
- Ambient (40-60 deg C)
- Running class B to F temp rises
- Stainless steel hardware
- Extreme Duty Paint System
- VPI insulation system based on proven experience
- Generous bearing cavities with large oversized bearings
- Synthetic lubricant for extended lubrication cycles
- Extended drive shaft length
- 4140 shaft material
- No feedback device is required
- Bearing RTDs and accelerometer
- Weight is 8300 lbs.

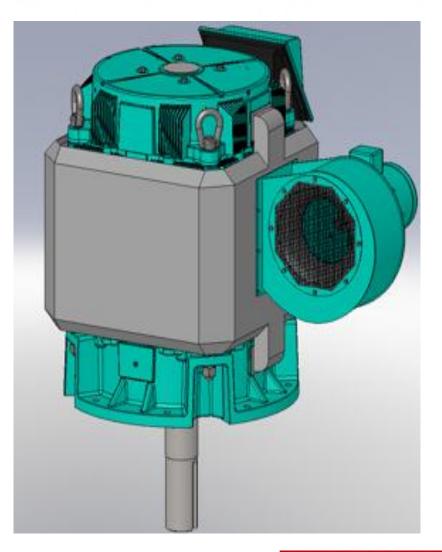
Direct Drive Motor for ACC

Designed specifically for ACCs

- Eliminate all mechanical items in order to provide best reliability.
- System efficiency is improved.
- Sustained efficiency motor efficiency is consistent compared to mechanical efficiency which degrades over time as components wear.
- 85 dba with blower; 60 dba without blower

HP	Speed	Amb	Frame	FL PF	FL Eff	Noise	Weight
167	104	60	5832	90.0%	90.3%	90 dba	8500 lbs.




ACC Drive Motor (future) Discussion

- Identified weight difference
- Motor enclosure (based on noise level)
 - > Open
 - > TEWC
- Mechanical design to improve bearing loading
- Shaft diameter 6.5" max
- Shaft length extension up to 30 inches?
- Torque capabilities to 13,000 lb-ft2

Configurations for ACC

Protecting Your Investment - Monitoring

RTDs

- Allow continuous monitoring of motor winding and bearing temperatures
- Can identify abnormal condition long before a thermostat would trip
- > Will help to optimize lubrication cycle for bearings

Accelerometers

- > Allow continuous monitoring of motor/fan vibration
- Can identify abnormal condition much quicker than a vibration switch
- > Allows trending to predict maintenance for outage service
- Wireless technology available today

