CFD Analysis for Mitigating Wind Effects on ACC Performance

Cosimo Bianchini Riccardo Da Soghe Gary Mirsky Jamie Wilde Marco Ferrando

- Performance of power plants using ACC may largely be affected by wind conditions
 - Up to 10% reduction in net plant power output for 10 m/s wind^[1]
- Source of losses
 - Degradation of fan performance
 - Recirculation of hot air to downwind fan inlets

[1] Field data from PP1 plant summer 2013

- Wind screens may help maintaining high ACC fan performance
 - Reduced fan flow rate due to increased pressure loss

- Protect fan inlet from cross-wind
 - \rightarrow In large ACC neighbour fans generates distorted inflow conditions \rightarrow High wind speed below ACC fan level

- Design of effective wind screens protection is complex
 - Site specific
 - Wind condition specific
 - Problem specific

 \rightarrow Performance, Mechanical or Debris

- Economic break even point is case dependent
 - Costs largely depends on installation
 - Selling price per MW is variable
 - Benefits can be quantified using site PI Data

- Improved prediction of wind screen benefits
 - Optimal design
 - \rightarrow Positioning
 - \rightarrow Porosity
 - More reliable estimate of actual power outcome
 - \rightarrow Direct modelling of changes in cooling potential
 - Heat exchanged
 - Established vacuum level
 - →Based on wind statistics behaviour of other modules can be forecasted

- CFD reproduce the 3D local air field around ACC
 - Detailed plant layout
 - \rightarrow Buildings, Chimneys, Storage tanks and other relevant structures

- Detailed wind conditions
 - →Applied far field velocity profile reconstructed depending on site conditions and prevalent wind direction

- CFD reproduce the 3D local air field around ACC
 - To reduce computational cost: steady-state assumption
 - \rightarrow Wind is assumed constant in magnitude and direction
 - →Other plant modules operate at nominal conditions
 - Possible iterative coupling
 - →ACC model includes active sub-modules for fan, heat exchanger and... Wind Screens

Heat-exchanger bundles: red Steam pipes: purple Windwalls: orange Single unit separation: azure Fan Inlet Bells: green

- ACC sub-model composed by
 - →Fan
 - Pressure jump implementing actual characteristic curve
 - →Heat-exchanger
 - Distributed heat sources
 - Distributed momentum sinks
 - →Wind screens
 - Porous or non-porous screens
 - Loss coefficient proportional to fabric porosity

Discontinuous pressure field

Continuous velocity field

- Expected output
 - →Global wind field in power-plant
 - Understand critical machinery and effects of buildings
 - Verify local fan inflow conditions
 - \rightarrow Fan flow rate
 - Direct link to generated power
 - Possible to reconstruct the full power gains
 - » Using available plant statistics to correlate fan flow rate and plant power

- 2 large ACC units
 - Fan array of 5x7

- Computational grid
 - Hybrid tetrahedral-prismatic unstructured mesh
 - →Automatic generation algorithm based on local geometry dimension
 - i.e. gaps, radius of curvature
 - 9M tetrahedral elements
 - \rightarrow Local refinement around plant location
 - 3 layers of prisms on solid walls
 - \rightarrow No prisms on thin walls

- Boundary conditions
 - External domain 1800x1800x300 m
 - Principal wind direction is NW

Velocity vector and contour plot

Velocity vector and contour plot

• Air temperature contour plot

Air temperature contour plot

- Peripheral fans are the mostly affected by wind
 - Upstream fan column blows almost 25% less air than last one
- At high wind speed also internal fans reduce their performance

- Modular wind screen set-up
 - Panels can be activated or deactivated for faster analysis
- Several wind screens configurations studied
 - Cross shaped walls
 - Single/Double panel
 - Suspended panel, lip or wrap
 - Solid/Porous panel

lip

wrap

Ground level

research

Adapted from Owen and Kroger 2011

. . .

- CFD for mitigating wind effects on ACC -

FAN DECK

Panel 4

Panel 3

Panel 2

Panel 1

• Below ACC flow field

Ergon research

- Achievable enhancement for each ACC column of fans
 - Highest rate on first column
 - Most effective is solid double layer with horizontal lip
 - Comparable performance of fabric screens on internal columns

- Wind screen efficiency
 - Defined against low wind performance of unprotected fan array
 - Possible to achieve efficiency close to 90%
- Gains may be obtained also at relatively low wind speeds

- Correlating plant data and efficiency from CFD
 - Estimate of power output for typical daily and seasonal wind behaviour
- Comparison among various wind screens to evaluate economical optimum
 - Installation cost, energy value, penalties, etc
 - Shortest break-even obtained with fabric screen configuration

Conclusions

- Implementation of a full 3D CFD model of plant layout
- Active modules for fan, heat exchanger and wind screens
- Case-study
 - 2 large ACC units installed in desert
 - Comparison of several wind screen configurations and wind speeds
 - Simulation of global fan array performance and local flow field
 - \rightarrow Most affected fans are the upstream column and row
 - \rightarrow Best compromise between cost and effectiveness is porous layer
 - \rightarrow Layer 12 plus wrap on perimeter is considerably better then all others
 - Horizontal lip is discarded due to impracticality
 - Use of available plant data to estimate expected power output with wind screen
- Proposed method is able to provide a reasonable and detailed estimate of the wind field around the ACC
- With small efforts it is possible to verify several wind screens configurations to decide most effective solution

CFD Analysis for Mitigating Wind Effects on ACC Performance

Cosimo Bianchini Riccardo Da Soghe Gary Mirsky Jamie Wilde Marco Ferrando

