CFD analysis for optimal wind screen positioning

Cosimo Bianchini
Associate – CFD specialist
cosimo.bianchini@ergonresearch.it

Ergon Research
Via Campani 50 Firenze
Motivation

- Performance of power plants using ACC may largely be affected by wind conditions
 - Up to 10% reduction in net plant power output for 10 m/s wind\(^1\)

- Source of losses
 - Degradation of fan performance
 - Recirculation of hot air to downwind fan inlets

\[1\] Field data from PP1 plant summer 2013
Motivation

- Wind screens may help maintaining high ACC fan performance
 - Protect fan inlet from cross-wind
 → In large ACC neighbour fans generates distorted inflow conditions
 → High wind speed below ACC fan level
 - Reduced fan flow rate due to increased pressure loss

![Graph showing the relationship between pressure jump and air velocity.](image-url)
Motivation

- Design of effective wind screens protection is complex
 - Site specific
 - Wind condition specific
 - Problem specific
 - Performance, Mechanical or Debris

- Economic break even point is case dependent
 - Costs largely depends on installation
 - Selling price per MW is variable
 - Benefits can be quantified using site PI Data
Modelling strategy

- Reproduce the 3D local air field around ACC by means of CFD
 - To reduce computational cost: steady-state assumption
 - Wind is assumed constant in magnitude and direction
 - Other plant modules operate at nominal conditions
 - ACC model includes active sub-modules for fan, heat exchanger and... Wind Screens

Heat-exchanger bundles: red
Steam pipes: purple
Windwalls: orange
Single unit separation: azure
Fan Inlet Bells: green
Chosen test case

- Large ACC assembly
 - 5 condenser streets x 8 fans each
 - Fan diameter is about 11.5m
 - Fan deck elevation is about 20m
 - At nominal working conditions the cross-flow is already higher than half of vertical fan velocity
- ACC is partially surrounded by tanks and buildings
- ACC is dimensioned to have 13 °C rise in cooling air through the bundles
Chosen test case

- Weather conditions
 - Pressure = 1 atm, Temperature = 10 °C
 - Wind speed
 → Power law profile
 → $n = 0.2$ for open landscape, $y_{ref} = 34.7$ m
 - Wind direction
 → Principal wind direction accounts for more than 20% of events
 → 60% of registered events are characterized by deviation larger than 45°
Geometrical modelling

- Unstructured hybrid grid
 - Tetrahedral elements used to model the free-stream
 - Prismatic cells exploited to better discretize boundary layer
 - Many solid walls treated as thin surfaces
 → Most of ACC solid walls
 → Fan and bundle surfaces
 → Wind screens and lifting devices
 - Total of 10M cells
Active elements modelling

- **Fan** is treated with *fan* model
 - It substantially implements the pressure-jump model
 - Pressure jump profile is polynomial with velocity
 → Parabolic fit with fan datasheet points
 → Polinomium is limited for minimum and maximum fan velocity
 - Avoid unphysical curve behaviour

![Flow rate vs Dimensionless pressure rise graph](attachment://flow_rate_vs_dimensionless_pressure_rise.png)

\[y = A x^2 + B x + C \]
Active elements modelling

- **Condenser bundles** are treated with *radiator* model
 - Radiator is a combined thermal- and pressure-jump interface
 - Pressure-jump is proportional to bundle dynamic head
 \[dp_{bundle} = K_{bundle} \frac{1}{2} \rho V^2 \]
 - Any different term is adjusted through a variable K_{bundle} coefficient
 - 6° order polynomial to fit available manufacturer data
Active elements modelling

- **Condenser bundles** are treated with *radiator* model
 - Radiator is a combined thermal- and pressure-jump interface
 - Thermal-jump behaviour may be described either by:
 - Global heat transfer coefficient and reference temperature
 - Heat Flux
 - Fixed air bundle outlet temperature assigning a virtually infinite heat transfer coefficient and desired reference temperature
Active elements modelling

- **Wind screens** are treated with a *pressure-jump* model
 - Porous screens loss is proportional to local dynamic pressure
 \[dp = K_{\text{screen}} \frac{1}{2} \rho U^2 \]
 - Loss coefficient is function of fabric solidity.

![Normalized screen loss vs Fabric solidity](chart.png)
Fan bundle coupling

- Validation of correct sub-model implementation checked for isolated single fan configuration
 - 1.6% difference against theoretical duty point
- Global assembly has lower average performance
 - Cross-wind effects increase pressure loss by 15% of the maximum fan pressure rise
Wind speed effects

- ACC performance degrade with increasing wind speed
 - Mass flow rate losses are above 35% already at 10m/s wind speed
 - This corresponds to an additional 30% in total pressure resistance

- Wind loss coefficient
 - $\xi_{wind} = \frac{dp_{wind}}{\frac{1}{2}\rho U^2_{wind}}$ is comprised between 0.2 and 0.5
Wind speed effects

- Increasing fan head
 - Wind losses are compensated
 - Additional pressure due to wind follows the same trend
 - Reliable tool to predict potential gains
 → at other wind speeds
 → with different fans
Wind screens

- 11 mitigating devices tested
 - Configurations obtained combining different concepts

- Suspended wrap
- Suspended walkaway
- Screens attached on the risers
- Cruciform ground screens
- Double cruciform ground screens
- Suspended central
- Deflectors
Wind screens

- Optimal configuration scouting
 - Intermediate wind speed of 6.5 m/s
- Wind losses can be reduced up to 15%
- Maximum gain is nearly 10%
 - Achieved with cruciform and external wrap
Wind screens

- Optimal configuration
 - Compromise between performance and simplicity (cost)
 - cruciform fabric screen with 70% solidity
 - suspended vertical wrap around ACC walls
Wind screens

- Gain is proportional to wind speed
 - At 10 m/s it is above 14%

- Wind loss coefficient present a maximum
 - Maximum reduction in wind loss coefficient is at intermediate wind speeds
Wind screens

- Wind screen recovery factor
 - Express the pressure recovered by the fan respect to the non-shielded case respect to the dynamic wind pressure
 - Wind screens are mostly efficient at intermediate wind speeds...
 ➔ But recover more air flow at high wind speed
Wind angle effects

- Also the wind direction has an impact on fan flow rate
 - Minimum losses are obtained with wind normal to the condenser streets
 - The gain of the wind screens is at the opposite maximum for larger angle of the wind
Conclusions

- A CFD model was built to investigate possible benefits in reducing wind losses by means of wind screens
 - The model was validated against theoretical data

- Wind screens are capable to mitigate wind losses
 - Gain increases with wind speed (Max 14% at 10 m/s)
 - Wind screen recovery factor starts decreasing at intermediate wind speed

- Actual flow rate depends on wind screens configuration, wind speed and wind direction
 - Extrapolation of results to other conditions may be pursued by means of the wind loss coefficient