

Supply Reliability (1,149 MW Total)


Martin Drake Power Plant

Coal #6 - 77 MW #7 - 131 MW

Birdsall Power Plant

Natural Gas 55 MW

Front Range Power Plant

Natural Gas Combined cycle 480 MW

Contracted Solar Facilities

AFA 5.4 MW Solar Gardens 4 MW CSR 10 MW

CSU Hydro Electric

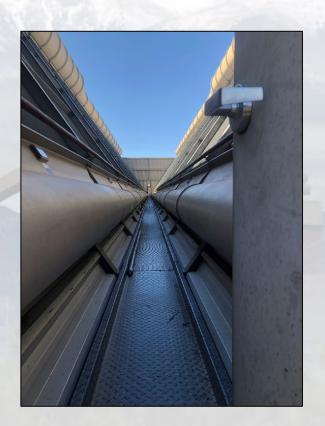
35.2 MW (6 units)

Nixon Power Plant

Coal #1 - 208 MW

Natural Gas #2 & #3 - CT's, 60 MW

Contracted WAPA


Hydro ~83MW

Plant Design Parameters

480 MW 100 gpm max water use

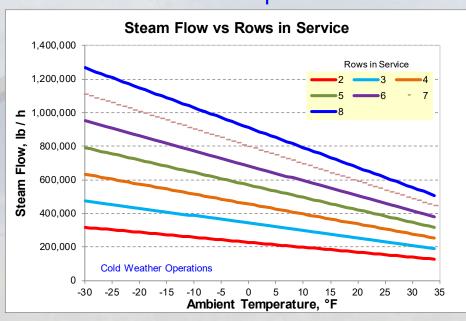
ACC Design Conditions

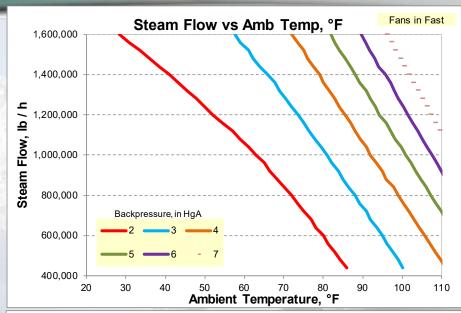
1,266,468 pph 1081 Btu / lb 3.57 in HgA 80 °F air temp 12.01 psia barometer

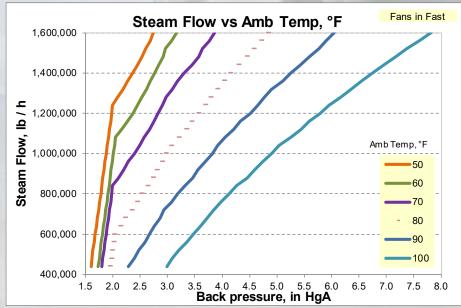
40 two-speed fans 8 rows

Row 8 - 5

Permanent Ladders / Platforms


Permanent Ladders / Platforms



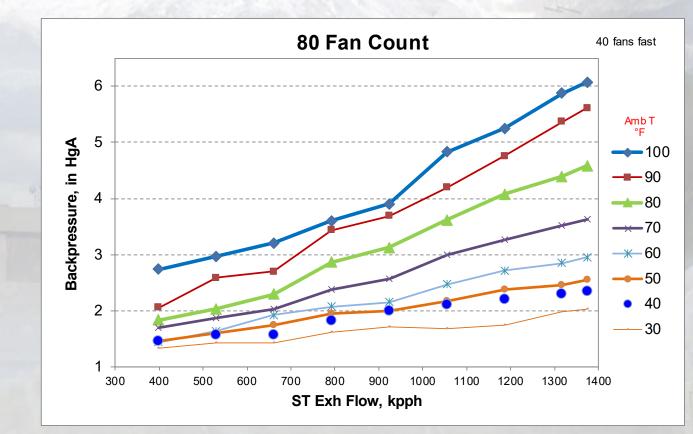


Manufacturer Performance Curves

Cold Weather Operations

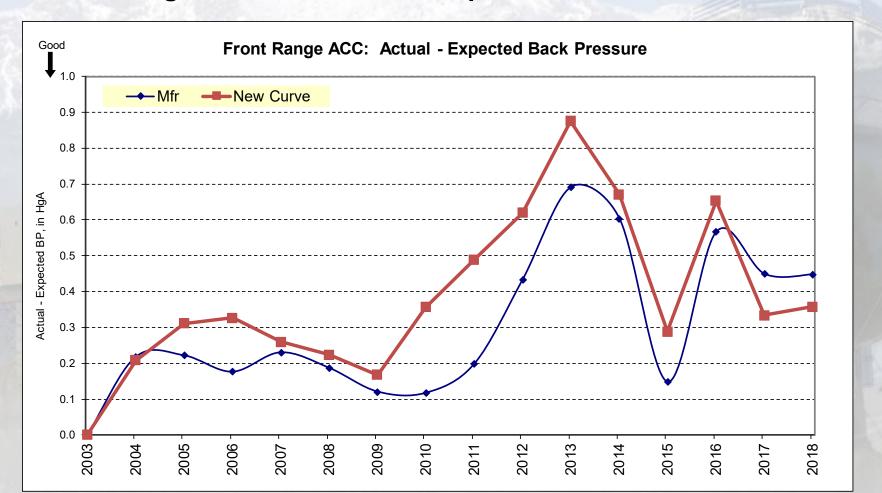
Self-Developed Performance Curves

15 to 80 fan count, where


0 = fan off

1 = fan on slow

2 = fan on fast


Mfr supplied curves applicable only for 40, 50 & 80 fan count.

- Defined at 'new & clean'
- Used for trending

Water washing lowers the Actual – Expected Difference

Key Performance Indicators

Actual vs New & Clean Backpressure

Air Side differential $(T_{cond} - T_{air removal})$ (by row)

Ambient conditions (Baro, RH, Wind Speed / Dir

Fan Aux Load (kW / kpph)

Fan static pressure (future consideration; Hi/Low, before/after wash)

Other KPI's

SJAE, GSC duty & Temp rise (SJAE nozzles replaced at ~9 years) Subcooling

Performance-Based Recommendations

- Water wash annually (0.4 to 0.7 in HgA improvement)
- Helium leak tests
- Careful with using inlet air temperature RTD's (air recirc bias)

Water-washes

Contractor supplied wash skid. (OEM skid / rig insufficient quality)

Inspection Summary

- LP turbine rotor deposits
- Ductwork & Piping (passivated, free of significant iron removal, FAC evidence)
- Standing water / rusting in the valley walkways
- Structural review

IP Drum steam separator flowassisted corrosion

Stationary Vane Cracks

Stationary Vane Cracks

Crack at weld in turning vane support

Tube Connections

Historical: 1 tube repaired, 1 small crack. Found during Helium leak testing

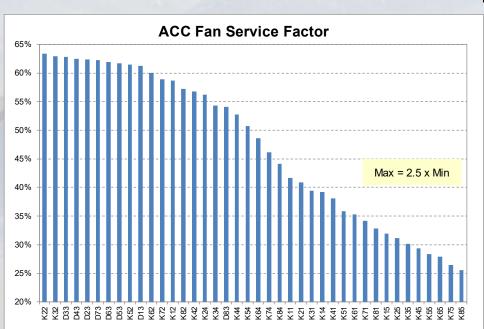
Center trough between tube entry with standing water and rust

Tube inlets; area around black scale in tubes is FAC

Steam bypass on top of exhaust duct, FAC at wall impact point

FAC on support pipe (shiny spot) at entry to lower distribution duct

Oil Filter Cart


- 2 elements: 6 & 12 μ
- Moved every 2-3 days
- 10 gph



Fan Gearbox Oil Changes

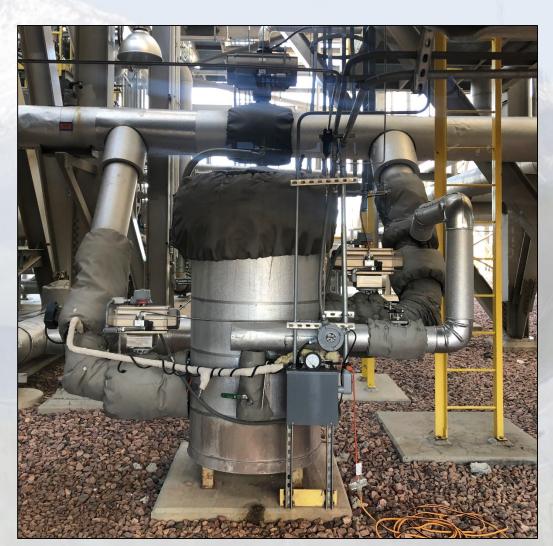
- Changed oil based on oil sample results
- Changing from Amsoil to Mobil 632

Gearbox Oil Testing

Particulate based focus

Fan Gearbox Oil Filtering

- Duty cycle basis is a consideration
- 2 Carts in service ~3 days per cell



Condensate Side-stream filter

- start-up iron throw sends magnetite layer to HRSG
- used during full-plant start ups
- Condensate pump suction strainers not clogging (with current operation)

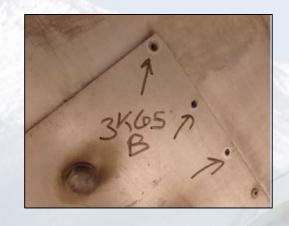
Lesson learned: Don't use a silicabased filter element

Insulated & heat traced loop seals

Upgrades / Modifications

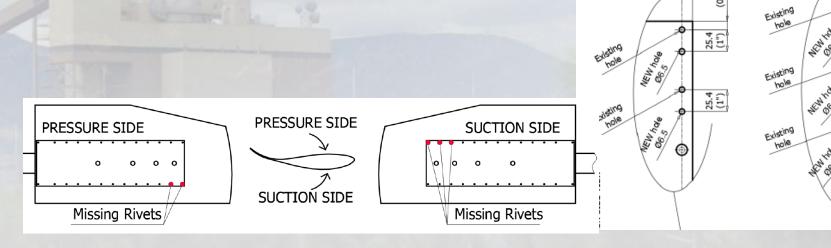
- Built in ladders & platforms to upper ACC ducts
- Heat trace condensate tank level sensors

Hogger isolation valves: reduce atmospheric leakage into ACC.


Oil Storage Deck

Fan Blade Inspections

New Rivet Installation: Engineered metric rivets 6x12 mm UNI 9200-A, DIN 7337-A Note: Blades are fixed pitch


Warning: Blades drop with no alarms / warnings

("SYP.0)

(1")

ACC Operating Practices

Freeze Protection

Know design # of rows vs steam flow

Verify controls / operations

Thawing cells

Walk the rows (thermal scans if freezing is suspected)

Air Removal

Automatic burp cells / rows (was manual)

Helium leak testing (annually)

Monitor ΔT (Condensate T – Air Removal T < 20°F)

DA non-condensable-gas vent directed back to the ACC

ACC Operating Practices

Walkdowns

- Weekly row walks
- Motor vibrations: on routes (looking into a vibration trip switch & potentially on-line vibration monitoring)

Chemistry

 O_2 Control: hydrazine then carbohydrazide then nothing. O_2 is maintained 10 - 20 ppb by the deaerator

Chemistry / corrosion. Some surface corrosion. Very minimal

Internal Inspections. Every 2-3 years.

Watch IP Drum Steam separators (replaced in 2010, no issues since)

Contact Information

Colorado Springs Utilities

www.csu.org

E. Thomas Cook, PE
Colorado Springs Utilities
Engineer Managing, Operating Engineering Group

tcook@csu.org