Deficiency reduction after installation of optimized wind screen configuration

www.ergonresearch.it

Ergon Research Via Campani 50 Firenze

Outline

- Introduction
 - Plant description
 - Motivations
 - Objectives
- CFD modelling
- Preliminary sensitivities
- Results of optimization
- Validation against field data

Deficiency reduction after installation of optimized wind screen configuration

Introduction

www.ergonresearch.it

Ergon Research Via Campani 50 Firenze

Plant description

- Two identical 800 MW CC units (Unit X & Y)
 - MHI 501G GT's (2 per unit)
 - MHI ST
 - ightarrow 300 MW nominal rating
 - Deltak HRSGs
 - Hamon ACC

ACC description

- ACC configuration is:
 - 9 streets x 4 cells per street
 - Streets 2-6 are all VSD fans.
 - Streets 1,7,8,9 are each equipped with one VSD and 3 fixed speed fans
 - Fin fan cooler attached on the external side
 - On the opposite side the turbine building is positioned quite close to the ACC

Motivations

- Both unit X and Y ACC's are affected by winds during summer operation
 - Unit X is affected by SW winds, which is the prevalent wind direction in the summer
 - Unit Y is affected by NW winds, which occur much less frequently on hot summer days
- Driving effect is the blockage of the turbine building
- Deficiencies in ACC require not using the afterburner
 - Sensible reduction (\approx -50MW) in power output

Motivations

- In 2014 wind screens were installed to mitigate such effect
 - Screens were installed on Unit X only
 - Suspended windscreens:
 - \rightarrow On the turbine buildings side
 - ightarrow On the west side

- Unit performance from summer 2013 was compared to summer 2015
- Comparisons based on similar ambient temperature, RH, wind speed and direction, and back pressure showed that:
 - ightarrow The units produce additional 15-20 MW with the wind screens in place (30% loss recovery)
 - \rightarrow The screens appear most effective for wind speeds up to 20 mph
 - ightarrow The screens are less effective for winds exceeding 20 mph, but these don't occur often

Objectives

- Analize alternative wind screen layouts to choose an optimum
 - Depending on the specific objective different optimal solutions may be identified
- The real objective was agreed to be:
 - Minimize the derating on the downstream unit \rightarrow Limit the afterburner shutdown
 - Main focus is on Unit X with SW winds

 \rightarrow Most frequent scenario in summer

Deficiency reduction after installation of optimized wind screen configuration

CFD Modelling

www.ergonresearch.it

Ergon Research Via Campani 50 Firenze

CFD modelling

- Steady-state analysis
- Ideal gas modelling
- Buoyancy effects
- Turbulence modelling is a modified k-epsilon to account for buoyancy effects
- Pressure-jump sub-models to treat fans and bundles
- Plant layout directly reconstructed in the model
- Large domain to avoid interaction with prescribed boundary conditions

Domain geometry

• View from above (South-West) of the domain

Domain geometry

• View from above (North-West) of the domain with ground elevations (H)

Domain geometry

• View from above (North-West) of the ACC (Unit X)

- Fan model
 - Fan model implement a sudden pressure rise as a function of normal air velocity
 - Quadratic function implemented in the code
 - Extended range towards low flow rates

- ACHE fan model
 - Pressure rise is a quadratic function of air bulk velocity at the fan
 - Actual profile is clipped between 3 and 10 m/s

- Bundle model
 - Pressure drop in bundle is set by the pressure drop coefficient $K = \frac{dp}{0.5\rho U^2}$
 - Pressure drop coefficient is calculated at duty point: $\rightarrow K_{ACC} = 59.22$
 - This procedure does not consider any type of additional losses
 - \rightarrow Lateral wind
 - \rightarrow Neighbour fans
 - \rightarrow Recirculation losses
 - Bundle thermal submodel maintain a fixed outlet temperature
 - ightarrow Other treatments are available (imposed duty, fixed HTC and ref temperature)

• Wind:

- Far field boundary layer:
$$V(y) = V_{ref} \times \left(\frac{y}{H_{ref}}\right)^a \begin{cases} V_{ref} \\ H_{ref} \\ a \end{cases}$$

- Power law exponent a is a function of ground roughness and BL stability (and of H_{ref}) \rightarrow Irwin 1979 suggested a value of 0.2 for stable BL over rough surfaces (http://www.webmet.com)
- Selected wind conditions:
 - \rightarrow Low wind day: V_{ref} = 4 mph = 1.79 m/s
 - \rightarrow Medium wind day: V_{ref} = 12 mph = 5.36 m/s
 - \rightarrow High wind day: V_{ref} = 20 mph = 8.94 m/s
- Reference wind conditions are measured at $H_{ref} = 39$ m

Deficiency reduction after installation of optimized wind screen configuration

Preliminary sensitivity

www.ergonresearch.it

Ergon Research Via Campani 50 Firenze

Results - Wind speed sensitivity

- Analysis conducted with NW wind without windscreens
 - Wind speed impacts both upstream and downstream units
 - Losses increases up to 20-25% at 20 mph
 - Downstream unit always shows a reduced capacity
 - The gap is variable with wind speed and is maximum (>40MW) for intermediate wind speeds

Results – Wind direction sensitivity

- Analysis conducted at 20 mph without windscreens
 - The mass flow on downstream unit is substantially symmetric
 - \rightarrow The upstream units change by 3%
 - Recirculation is almost constant in the upstream unit
 - In terms of power the problem can be considered symmetric with a maximum 3.64% error
 - →South-West wind maximize the differences between the two units but is less critical in terms of absolute values
 - Higher thermal power extracted at ACC than with NorthWest wind

Results – Wind direction sensitivity

- Analysis conducted at 20 mph with windscreens
 - The mass flow is substantially symmetric
 - In terms of power the problem can be considered symmetric with a maximum 2.24% error
 - →North-West wind maximize the differences between the two units and is more critical in terms of absolute values
 - Lower thermal power extracted at ACC with NorthWest wind

Results – Units coupling sensitivity

- Are the wind screens on one unit influencing the flow on the other unit?
 - The answer is: NO
- Analysis conducted at 20 mph with a South-West wind
 - Two units works independently
 - →Maximum effect of opposite unit wind screens is below 1.4% in terms of thermal power

Preliminary conclusions

- CFD model is robust and uncertainty of the computational model results is within 1%
- Solution with SW wind is symmetric to that with NW wind with a 3% maximum deviation
 - The deviation is further reduced with wind screens
- The two units work uncoupled so that wind screens layout can be studied independently for the upstream and downstream unit

Deficiency reduction after installation of optimized wind screen configuration

Obtained results

www.ergonresearch.it

Ergon Research Via Campani 50 Firenze

Design constraints

- Road
- **Buildings**
- Equipment

- Deficiency reduction with optimized wind screen -

UNIT Y

• Unit X – Unit Y implement symmetric layout

1 SW perimeter screens on Unit X NW perimeter screens on Unit Y

Screen height = 5.92 m

Unit X – Unit Y implement symmetric layout

2&3 NW perimeter screens on Unit X SW perimeter screens on Unit Y

Screen height = 5.92 m

• Unit X – Unit Y implement symmetric layout

• Unit X – Unit Y implement symmetric layout

• Unit X – Unit Y implement the same windscreens as "Cruciform Layer 1 + 2 screens (rev 1)"

- Deficiency reduction with optimized wind screen -

• Unit X (V designs) – Unit Y implements symmetric layout

• Unit X (V designs) – Unit Y implements symmetric layout

• Unit X (V designs) – Unit Y implements symmetric layout

ground based

Unit X (Λ designs) – Unit Y implements symmetric layout

• Unit X (parallel designs) – Unit Y implements symmetric layout

• Unit X (parallel designs) – Unit Y implements symmetric layout

ground based

• Unit X (X designs) – Unit Y implements symmetric layout

• Unit X (X designs) – Unit Y implements symmetric layout

• Unit X (one-bay back designs) – Unit Y implements symmetric layout

ground based

suspended

Screen height = 15.238 m

Screen height = 9.451 m

• Unit X (Y designs) – Unit Y implements symmetric layout

• Unit X (cruciform designs) – Unit Y implements symmetric layout

• Unit X (cruciform designs) – Unit Y implements symmetric layout

ground based

• Unit X (cruciform designs) – Unit Y implements symmetric layout

• Unit X (cruciform designs) – Unit Y implements symmetric layout

ground based

• Unit X (cruciform designs) – Unit Y implements symmetric layout

Results for NW wind at 20 mph

- Unit X is the upstream unit
- Best ranked layouts

Results for NW wind at 20 mph

- Unit Y is the downstream unit
- Best ranked layouts

- Deficiency reduction with optimized wind screen -

Results for SW wind at 20 mph

- Most promising layouts for the downstream unit were selected to test with SW
 - Now the downstream unit is X
- Ranking is substantially confirmed

Results for SW wind at 20 mph

- Significant improvements are registered for the upstream unit as well
- Losses due to wind can be reduced up to 55%

- Wing cruciform layout is the most performing however it was discarded
 - More difficult installation, generate higher stresses on the structure
- Focusing on downstream unit with SW wind there are three layouts with equivalent performance (effectiveness close to 30%)
 - Layout 88 was discarded to leave space for road passing
 - Configuration n'n was selected as it better perform with NW winds

- Wind speed sensitivity
- Optimum solution performance where tested also at lower wind speeds
 - At 5 mph the benefits are negligible
 - At 12 mph the benefits are significant only on the downstream unit
 - At 20 mph significant benefits for both upstream and dowstrean unit
 - \rightarrow Benefits confirmed with NW wind

- Are the benefits enough for not derating the downstream unit?
 - Difficult to estimate directly
 - Standard wind screen effectiveness may be too conservative in this case
 - \rightarrow CFD is predicting a derating of the ACC on the upstream unit
 - ightarrow Field experience: the upstream unit does not require afterburner shutdown
 - \rightarrow Any ACC derating within the limit of the upstream unit derating is managable without the afterburner shutdown
 - True wind screen effectiveness is defined against the upstream unit performance
 → Wind screens are able to recover more than 55% of the derating on the downstream unit

- Pay-back period
 - The derating due to high wind is about 50MW
 - ightarrow For ambient temperature above 90 °F it is substantially independent on ambient conditions
 - True effectiveness showed the capability of recovering more than 55% of the cooling capacity of the ACC
 - \rightarrow On average the derating is reduced to 21MW
 - With a low electricity price (30\$MWh) the payback period for the investement is 570 h
 - \rightarrow Cumulative hours with wind above 10 mph
 - Most of such derating occurs in hot summer days when the price is higher \rightarrow The pay-back period can be as short as 168 h (of high wind) for 100\$ MWh
 - Summer 2019: 217h with wind above 10mph and temperature above 26 $^\circ\text{C}$
 - Summer 2018: 368h with wind above 10mph and temperature above 26 °C

Conclusions

- The optimization of the wind screen layout by means of CFD was able to identify candidates with much higher performance than the one currently installed
 - Some canditates were discarded due to installation complexity and higher loads on the structure
- The selected optimum showed the capability of recovering 58% of the losses of the downstream ACC cooling capacity with respect to the upstream unit
 - The upstream unit do not suffer frequent net output deratings due to high wind
 - \rightarrow The afterburner is rarely shutdown
 - The upstream unit also benefits the installation of wind screens
- Considering obtained improvements a simplified economical analysis shows that the pay-back period is pretty short
 - Obviously it depends on how windy the location is

Deficiency reduction after installation of optimized wind screen configuration

Validation

www.ergonresearch.it

Ergon Research Via Campani 50 Firenze

Validation against PI Data

- Installation was completed during spring 2019
- Preliminary validation of new layout against PI DATA from summer 2018 against summer 2019

Weather data analysis

• Summer Data (from June to September)

S

Ε

30.00%

W

Hot days

 \rightarrow Ambient temperature >28 °C

Weather data analysis

- Summer Data (from June to September)
 - Hot days with high wind
 →Ambient temperature >28 °C
 →Wind speed >10 mph

- If the sample of data is representative of all critical events
 - NW wind is not frequent
 - Optimization should focus on SW wind only

PI data analysis

- Summer Data (from June to September)
 - Total power (Unit X) is computed as the sum of GT1 + GT2 + ST
 - Mean total power is showing a growing trend with wind speed
 →The wind direction does not have a significant impact

PI data analysis

- Summer Data (from June to September)
 - The average value depends on power plant controls
 - \rightarrow Most of values seem to represent off-design conditions
 - The plant is not always running at max power
 - \rightarrow It does not represent the expected power capacity

PI data analysis

- Summer Data (from June to September)
 - For each wind speed and temperature level the maximum power value is taken as representative for the expected power capacity
 - \rightarrow This assumption will be better justified with a larger set of data
 - ightarrow Only the wind and temperature conditions showing derating were selected
 - Power capacity for Unit X is showing:
 - ightarrow A decreasing trend with wind speed and ambient temperature
 - \rightarrow The slope decreases at higher temperature
 - With wind screens the trend has a lower slope at high temperature
 - ightarrow Derating at 32 °C ambient temperature:
 - No windscreens = -10.27 MW/(mph)
 - With wind screens = -5.75 MW/(mph)

Deficiency reduction after installation of optimized wind screen configuration

www.ergonresearch.it

Ergon Research Via Campani 50 Firenze