Large ACC Fan Gearbox Loads

D.N.J. Els, C.J. Van Rensburg, M.P. Venter

Stellenbosch University, South Africa

2021 ACCUG Virtual Conference, 12–14 Oct 2021

Data Measurement

- Shaft speed
- Shaft torsion
- Fan torsion load
- Shaft bending

Conclusions

A series of measurements were conducted on the ACC gearbox output shafts at the South African Medupi and Kusile power stations.

- These stations are new and comparable in size. Six dry cooled units, 6×794 MW total.
- Identical Hansen M4 ACC gearboxes.
- Medupi ACC induction motor start-up is direct online. Kusile employs a thyristors type soft-start.

Measurements as part of research project for SUMITOMO HEAVY INDUSTRIES, PTC Division, Global R&D Centre, Belgium.

Background

ACC Fan Gearbox Load Measurements at the Medupi and Kusile Power Stations

Bing Maps

Background Kusile Power Stations

Wikipedia: Kusile

Medupi ACC

• Fan: 34 ft Howden ELF 8 blades Hansen M4 ACC gearboxes

Test fan

• Start up: Direct

Kusile ACC

- Edge Fans: 34 ft Howden ELF 8 blades Hansen M4 ACC gearboxes
- Internal Fans: 34 ft Howden ENF 9 blades Hansen M4 ACC gearboxes

Test fan

 Start up: Thyristors type soft-start

Thyristor pair operation per phase of soft starter

https://www.electricaltechnology.org/2020/08/soft-starter.html

Tooth wheel Magnetic sensor Torsion strain gauge Bending strain gauge

Shaft speed calculation

Find peaks

- Find max between zero crossings
- Fit parabola through 3 points around max and calc peak time τ_i.
- Max points are separated $\Delta \theta = 2\pi/n$

Calculate raw velocity

- Time difference: $\Delta \tau_i = \tau_{i+1} \tau_i$
- Average velocity: $\omega_i = \Delta \theta / \Delta \tau_i$
- Midpoint time: $t_i = \tau_i + \Delta \tau_i / 2$

Shaft speed calculation

Correct for tooth wheel errors

- Every n = 60 point repeats. Assume accurate time difference for $\Delta \theta' = 2\pi$.
- Take $\Delta \tau'_j = \tau_{n(j+1)} \tau_{nj}$ and $t'_j = \tau'_i + \Delta \tau'_j/2$. Calculate velocity $\omega'_j = \Delta \theta' / \Delta \tau'_j$.
- Calculate spline through $(t'_{i}, \omega'_{i}) \rightarrow S'_{\omega}$ to obtain once per rotation velocity $\omega'(t) = S'_{\omega}(t)$ at any time.
- Define correction factor c_k, k = 1, 2, ..., n for every tooth.
- Minimize error $\epsilon(c) = \sum_{j=0} \sum_{k=1}^{n} [S'_{\omega}(t_{jn+k}) c_k \omega_{jn+k}]^2$ to obtain best *c*.
- Correct velocity $c_k \omega_{jn+k}$ cyclic for every tooth, k = 1, 2, ..., n and j = 0, 1, ...

Els et al.

Shaft speed calculation

Start-up angular velocity and acceleration

- Fit smoothing spline through corrected velocity and time points $(t_i, \omega_i) \rightarrow S_{\omega}$.
- Interpolate to obtain angular velocity $\omega(t) = S_{\omega}(t)$
- Differentiate spline calculate to angular acceleration $\dot{\omega}(t) = dS_{\omega}(t)/dt$

Shaft torsion

The torque strain gauges are fitted at an angle of 45° to the axis of the shaft. For a strain ε along the direction of the gauge the torque-strain relationship is

$$T = \frac{\pi E R^3}{2(1+\nu)} \cdot \varepsilon$$

TApplied torque [N·m] ε Strain[m/m]R= 65.75 mmShaft radiusE= 207 GPaYoung's modules ν = 0.29Poison's ratio

The gauge constant is then

$$K_T = \frac{T}{\varepsilon} = \frac{\pi E R^3}{2(1+\nu)} = 72.205 \frac{\text{N·m}}{\mu\text{m/m}}$$

Find the average frequency response over a long time (3 hours in this instance) to smooth out noise

- FFT ($N_{\text{FFT}} = 2^{15}$, Han windowed)
- 50% overlap for successive FFT windows.
- Sample frequency $f_s = 1200 \text{ Hz}$

The velocity and shaft torque can be combined to obtain the transient fan torque load T_F .

 $T_F = J_F \dot{\omega} + K_F \omega^2$

The aerodynamic load factor $K_F = \bar{T}/\bar{\omega}^2$ with \bar{T} and $\bar{\omega}$ averages in the steady state region.

Medupi-01 60 $T_F = J_F \dot{\omega} + K_F \omega^2$ 50 Forque T [kN·m] 40 30 20 10 /_F=9301 kg ⋅ m² 0 0 1 2 з 5 6 7 Time t [s]

The fan inertia J_F is calculated with a least-squares optimization procedure in the start-up region

$$\epsilon(J_F) = \sum_i \left[T_i - \left(J_F \dot{\omega}_i + K_F \omega_i^2 \right) \right]^2$$

Shaft bending

Full-bridge bending strain gauges are fitted symmetric in the axial direction of the shaft. For a strain ε along the direction of the gauge the moment-strain relationship is

$$M = \frac{1}{4}\pi ER^3 \cdot \varepsilon$$

with M Applied moment [N·m]

ε Strain	[m/m]
$R = 89.25 \mathrm{mm}$	Shaft radius
E = 207 GPa	Young's modules

The gauge constant is then

$$K_M = \frac{M}{\varepsilon} = \frac{1}{4}\pi ER^3 = 115.581 \frac{\text{N}\cdot\text{m}}{\mu\text{m/m}}$$

The bending moments are measured in the x- and y-direction. Total moment and direction relative to the shaft at time t

$$M = \sqrt{M_{sx}^2 + M_{sy}^2}, \qquad \phi = \tan^{-1}(M_{sy}/M_{sx})$$

The shaft rotation θ_i at the velocity signal peak times τ_i is

$$\theta_i = \theta_0 + 2\pi i/n$$

Constructed spline $(\tau_i, \theta_i) \rightarrow S_{\theta}$ with $\theta(t) = S_{\theta}(t)$

Data Measurement Shaft bending

Find the average frequency response over a long time (3 hours in this instance) to smooth out noise

- FFT ($N_{\text{FFT}} = 2^{15}$, Han windowed)
- 50% overlap for successive FFT windows.
- Sample frequency $f_s = 1200 \text{ Hz}$

Speed measurement:

- Low cost speed sensor was developed.
- Sub-rotation accuracy start-up angular velocity and acceleration.

Shaft torsion:

- Very large torque peaks during direct startup at Medupi.
- Low system torsional excitation at Medupi.
- Soft-starts can result in very large start-up torque peaks at Kusile.
- High system torsional excitation at blade pass frequency at Kusile.

Shaft bending:

- Unbalanced loads relative to shaft detected.
- Large bending loads on bearings.

General:

• Measured data can be used to develop and verify system models.

MinWaterCSP ACC test facility

System Dynamic Modelling

- The objective is an integrated model for the torque loads through the mechanical system of an ACC.
- The main purpose of the model is to investigate and predict the start-up and steady state mechanical loads through out the system.

and the second second second

Future Work

Thank you | Dankie | Enkosi

