

ACCs in Iran Optimization and Challenges

MohammadrezaVaghar

Head of Cooling System MAPNA Development Company (MD1)

Content

- History of Cooling System in Iran
- Air cooled condenser Projects

• Optimization and Development

Challenges and Obstacles

History of Cooling System in Iran

3				
				/

Map of Cooling System In Iran

Map of Cooling System In Iran

Map of Cooling System In Iran

Overview of Cooling System In Iran

- Gas, Steam and Combine Cycle
- In-use Fuel:
 - Gas
 - Mazut (Fuel oil)
- Both electricity export and import
- Renewable energy (Wind and Solar) has been trending recently.
 - Mapna builds 2.5 MW wind turbine
- At Peak duration
 - 57887 MW Production
 - 58254 MW Consumption
- Need to modify consumption pattern
- Need to build new power plant

Air Cooled Condenser Projects

Other Specification

- 20 to 30 °C ITD Range
- Single RowTube
- 30 to 36 ft. Fan Diameter
- 25 to 30 m platform height
- Double Speed and VFD motor
- Concrete and Steel Column
- Air Evacuation System
 - 1 Hogging Ejector
 - 2 Holding Ejectors

Design Process

- Find Optimum Size
 - Check different cases at the beginning of each project

CFD Study

- CFD Study:
 - ACC Size
 - ACC arrangement
 - Plant arrangement according to wind direction

CFD Study

Optimization and Development

High Wind Velocity

Problem Description:

DuringWarm Seasons Decrease in ACC Efficiency Decrease in Steam Cycle Load

Decrease in Load Because of High Back Pressure

	-					
Time	Fan Velocity (%)	Cond. Vacuum (mbara)	Wind Speed (m/s)	Amb. Temp. (⁰ C)	Active Power (MW)	Steam Flow (kg/s)
11:01:00	0 109.681	366.451	4.71	45.205	126.422	134.829
11:02:0	0 109.681	365.109	3.115	45.205	126.422	134.829
11:03:00	0 109.681	359.653	5.355	45.205	126.422	135.889
11:04:00	0 109.681	366.184	4.1	45.205	126.422	135.889
11:05:00	0 109.681	363.529	4.745	45.205	126.064	135.043
11:06:0	0 109.681	378.218	6.61	45.205	126.064	135.043
11:07:00	0 109.681	389.765	5.035	46.39	124.969	136.102
11:08:00	0 109.681	389.765	3.845	46.39	116.798	124.427
11:09:00	0 109.681	377.625	5.48	46.39	110.51	115.339
14:46:00	0 109.659	352.25	3.37	48.548	84.594	96.084
14:48:00	0 109.659	350.838	11.655	48.548	84.427	95.784
14:55:00	0 109.659	351.01	6.145	48.548	85.094	95.749
14:56:00	0 109.659	359.405	3.505	49.395	85.57	96.725
14:57:00	0 109.659	355.592	5.68	49.395	85.57	96.725
14:58:00	0 109.659	365.589	6.615	49.395	84.117	95.295
14:59:00	0 109.659	365.589	4.24	49.395	84.1 17	94.51
15:00:00	0 109.659	355.539	15.965	49.395	84.117	95.57
15:13:00	0 109.659	367.909	11.84	48.28	83.641	94.494
15:14:00	0 109.659	357.57	5.21	48.28	85.356	95.624
15:15:00	0 109.659	360.127	7.085	48.28	85.356	95.624
15:16:00	0 109.659	356.005	5.34	48.28	85.356	95.661
15:17:00	0 109.659	356.005	13.455	48.28	83.974	94.819
15:18:00	0 109.659	352.228	5.24	48.28	83.974	94.819
15:20:00	0 109.659	359.901	12.32	48.28	8 5.88	95.656
15:21:00	0 109.659	355.985	16.18	48.28	84.689	95.678
45.00.00	100 650	355 995	973	48.28	83 831	94 94 1

15

High Wind Velocity

CrossWind Analysis

MAPNA GROUP MD1 Co.

High Wind Velocity

Back-Pressure Analysis

CFD Analysis and Define Geometry

37343574

Cruciform wind screen Perimeter plus cruciform wind screen

CFD analysis:

Study Six Cases with two different kinds of WIND SCREEN:

(*a*) 40 C ambient temperature

Case	Wind Speed	windscreen
1	0	Cruciform
2	10 m/s	Cruciform
3	20 m/s	Cruciform
4	0	Perimeter plus cruciform
5	10 m/s	Perimeter plus cruciform
6	20 m/s	Perimeter plus cruciform

CFD Result:

MAPNA GROUP MD1 Co.

Conclusion:

- MAPNA GRO MD1 Co.
- Windscreen eliminates hot air recirculation phenomenon even at high wind velocity.
- Windscreen makes a uniform flow for all of fans. As a result, the vibrations of ACC structure will be reduced.
- Windscreen reduces the inlet velocity fluctuations. As a result, the force is lowered into the blades.
- The existence of windscreen prevents the work of fans close to the stall condition. As a result, all fans are in the safe region

Wind Speed	Fans average flow design flow (%)	v relative to the	Temperature difference relative to ambient temperature (°C)		
(m/s)	Existing condition	Perimeter windscreen	Existing condition	Perimeter windscreen	
0	95.3	96.4	0.0	0.0	
10	88.5	87.6	0.1	0.02	
20	86.2	85.7	2.7	0.11	

Ejector

DesignTemperature Difference: more than 20 °C 1st Stage of condenser shell side has a constant temperature High steam turbine backpressure = High condenser drain temperature (CoolingWater)

Disadvantage: Use Hogging!! Decrease power plant load!!

Solution:

Turn off 1st stage motive steam valve Re-design of 2nd stage nozzle

Cleaning

Due to installation issues and unbalance cleaning rails

MAPNA GROUP MD1 Co.

Optimization of Linear Duct

- Specially on Rudshour Project (7*7 modules)
- Optimize and Locating
 - Support
 - Guidvane

•

Challenges and Obstacles

3. Hybrid cooling (wet and dry) is illustrated conceptually at the left, in service at right Ar-colled-condenser

Cooling System of Other Plants

- Get involved in replacing wet cooling Systems in:
 - Steel Company
 - Petrochemical
 - Refinery
 - •

Conclusion and Future Work

- Our Requirement
 - The latest updates and optimization
 - V FrameTechnology
 - New Hybrid Development

- Our Features and Capabilities
- Design, Procurement and Construction
 Service of Air Cooled Condenser
 - Optimization Service

32

- Engineering Software Service:
 - 3D modeling, CFD, Piping, ...

Find Me at:

- MohammadrezaVaghar
 - Head of Cooling Department
 - <u>Vaghar_m@mapnamd1.com</u>
 - Tel: +98 912 289 48 77

Thank you