

ALTERNATIVE INDUCED DRAFT ACC SOLUTION

ACCUG – Conference – July 2024

Introduction to John Cockerill Hamon

- Induced draft ACC's (Generalities)
- Alternative induced draft solution
- Feedback from Plant in Belgium / BEE
- Perspectives

About John Cockerill Hamon

Main offices in Spain, France, Korea, Indonesia

In 2021 Esindus became 100% part of the Hamon Group

In 2022 John Cockerill acquire Hamon group

Strong Reputation

About John Cockerill Hamon

O Hydrogen

O Defense

- O Environment & Industry
- O Energy

O Services

- O Energy Solutions
- O Energy Transition
- O Cooling Systems

Dry Cooling

Water Solutions

Customer Service

Instrumentation

23/07/2024 • 4

John Cockerill Hamon around the world

- Introduction to John-Cockerill Hamon
- Induced draft ACC's (Generalities)
- Alternative induced draft solution
- Feedback from Plant in Belgium / BEE
- Perspectives

Induced Vs Forced draft ACC's

O Advantages - Drawbacks	Forced draft ACC	Induced draft ACC
Hot air exhaust speed	-	
Wind-sensitivity		÷
Fan-group temperature		
Fan bell diffuser		Ŧ
ACC motor consumption		÷
Air repartition over the bundles		÷
Fan group easy maintenance		÷
ACC height		÷
Bundle area exposure	÷	
Cleaning dirt evacuation		ł

- O Growing market
- O Savings
- Complete product portfolio

Induced Draft ACC Challenge

- On forced draft ACC, mechanical equipment is in the cold air stream
- Induced draft cooling towers & Induced draft condensers typically locate the gearbox in the hot air zone.
- Induced draft standard solutions locate the motor on the roof.

Fan group T(°C) range

Forced draft ACC	[min. ambient, max. ambient (*)]
Cooling tower	[min. ambient,50°C]
Induced draft ACC	[min.ambient,90°C]

all fans running

ACC Steam pressure	Steam turbine typical perating range	ACC by-pass typical perating range	Corresponding team saturated temperature
50 mbar	0	0	± 32 °C
100 mbar			± 46 °C
200 mbar			± 60 °C
300 mbar			± 69 °C
400 mbar			± 76 °C
500 mbar			± 81 °C
600 mbar			± 86 °C
700 mbar			± 90 °C
800 mbar		SONARA **	± 94 °C
900 mbar			± 97 °C

** SONARA is a waste incinerator plant, which Client (Buzzichelli) required to be able to operate ACC in continuous by-pass operation half of the year according the here under extract of functionnal description requirement:

TBP _s default	TBP _{min} / 0.75
TBP _s normal operation	Min: TBPs default
TBPs by-pass continuous operation	800 mbar
TBP _s by-pass operation before restart of turbine	Min: 370 mbar

- Introduction to John-Cockerill Hamon
- Induced draft ACC's (Generalities)
- Alternative induced draft solution
- Feedback from Plant in Belgium / BEE
- Perspectives

Alternative Induced Draft Solution

- O MARS (Modular ACC Riser Supported)
- O Induced draft solution "V-Concept"
- Standardized components (high preassembly at site)
- O Any shape possible, not only rectangular
- O Steam pipes are used as supporting structure
- O Variable V-angle
- Gearbox & motor in a basket below the bundles (Efficient cooling of the drive unit)
- Flexibility for winter operation cases (module isolating valves)
- Un-condensable extractions at each module side extremities
- Condensates isolated between and at each module side (no risk of steam backflow)

Alternative Induced Draft Solution

O Modular

- Erection : Each module is identical & made of pre-assembled blocks
- Process : Each module side is independent
- > Layout : Flexibility to arrange the modules and ease retrofit
- O Steam pipe supported
 - > 2 functions in a single element cost reduction
- O Gearbox/motor at the bottom in the cold air stream
 - Gearbox/motor cooling temperature as per forced draft configuration
 - No forces transmitted to the gear-motor assembly
 - High accessibility of the gear-motor assembly for maintenance operations
 - Limited vibration transmitted by the fan to the gearmotor assembly

Alternative Induced Draft Solution

(How it works)

- The drive unit & fan-assembly are connected by a shaft
- The shaft bearings absorb the axial and radial loads
- The gearbox is isolated from the fan assembly and only transmits torque
- O Each motor-gearbox basket includes:
 - > motor
 - > gearbox
 - > motor-gearbox coupling
 - > access cages
 - frame structure
 - > safety screens
 - frame plate preventing object fall/oil leak
- **O** The gearbox and motor are in the cold air zone

- Introduction to John-Cockerill Hamon
- Induced draft ACC's (Generalities)
- Alternative induced draft solution
- Feedback from Plant in Belgium / BEE
- Perspectives

CHP in GENT (Belgium) - BEE

- O Combined Heat & Power
- O Burns waste wood (biomass plant)
- O Commissioned in 2021

Power Generation	19.9 MW
Thermal Duty	32.9 MW _{th}
Number of streets	1
Number of modules	3
Dimensions (w x l x h*):	13.2 m x 42.8 m x 15.4 m
Fan diameter:	36 feet
Motor Nameplate Power	75 kW
Fan RPM	~80
Tip-speed	~46m/s

- Simultaneous work & repetitive actions
- O Safe & quick quality controls
- 90% of welding performed at ground level as well as pre-assembly

CONSTRUCTION

CONSTRUCTION

- O High pre-assembly
- Lateral blocks (Half-cell bundles, manifold and collector) lifted at once
- Time to install one complete L-block (worst time : 2h30 – best time : 45 min)
- Roof blocks (Fan, bridge, deck and stack) lifted at once

Reduced Erection Time compared to standard forced-draft ACC

- Vacuum test over each module side at ground level
- Fan & shaft Pre-cold commissioning done at ground level

MAINTENANCE

• Motor & gearbox in a basket (plug& play, easy and safe direct access)

• Fan blades access thanks to removable access platform, blades lifted to ground level with JIB crane

- O Semi-automatic cleaning system
- Access with rolling doors.
- Ongoing developments to switch to a fully automated solution

- > Added safety for operators
- Cost reduction per cleaning
- Water-efficient consumption
- > Motorizations : Electric / hydraulic

MAINTENANCE

- O Axial & radial loads absorbed by the structure
- $\ensuremath{ O}$ No forces transmitted to the gearbox
- O Almost no vibrations at the bearings & gearboxes
- Slight vibrations at the top of the fan-bells (solved by increasing rigidity of the bell)

	Alarm / Trip	Measured values
Gearbox vibration (true RMS mm/s)	4.5 / 7.1	[0.5 – 1.5]
Shaft Bearings Vibration (true RMS mm/s)	4.5 / 7.1	[0.3-0.5]

(*) as per ISO 10816-3 – Table A2 – flexible mounted support

23/07/2024 • 21

- Introduction to John-Cockerill Hamon
- Induced draft ACC's (Generalities)
- Alternative induced draft solution
- Feedback from Plant in Belgium / BEE

• Perspectives

New Perspectives

O VENUS

- O Updated support structure (truss columns or pipe)
- For added space below big ACC's

- > All basic advantages of the induced draft
- > Sensitive parts out of the air hot stream
- Easy maintenance of the motor-gearbox set
- Low maintenance of the shaft bearings

O JUPITER

- O Gear-motor at the fan-deck
- 0 ...

Thank you

De Winter Johan

Key Product Leader

Johan.dewinter@johncockerill.com

Utrera Ignacio

Chief Technology Officer Ignacio.utrera@johncockerill.com John Cockerill (Headquarters)

Rue Jean-Potier n° 1, 4100 Seraing Belgium

T. <u>+32 4 330 2444</u>

F. <u>+32 4 330 2582</u>

John Cockerill Hamon SAU

Avenida Manoteras n° 50 28050 Madrid Spain

T. <u>+34 91 383 55 02</u>

welcome@johncockerill.com

johncockerill.com

