Galebreaker Industrial – Jeff Ebert

Wind Effects on Air Cooled Condensers – Mitigating high seasonal winds

Presenter:

Jeff Ebert – Galebreaker Industrial

- Wind Effects
- The Project
- Performance Evaluation
- Questions

THE EFFECT OF CROSSWINDS

A CLOSER LOOK BENEATH THE FANS NO CROSSWIND

A CLOSER LOOK BENEATH THE FANS with CROSSWINDS

- Airflow reduces as wind speed fluctuates/increases
- Wind turbulence induces dynamic blade loading that cycles as the fan rotates, potentially causing blade stress and hardware fatigue.
- · Prevailing wind direction and wind speed are seasonal.

HOW WIND EFFECTS ACC PERFORMANCE

CFD ANALYSIS - DYNAMIC FAN BLADE LOADING

HOW WIND EFFECTS ACC PERFORMANCE

THE PROJECT

- 353 MW Gas Fired power plant in Saskatchewan Canada
- Online December 2019
- Contacted Galebreaker June 2020 regarding fan failures, performance loss during high winds

Project Scope

- Summer Winds 19 M/S vs 5 M/S
- CFD to model existing conditions, evaluate ACC windscreens
- Provide loads created by windscreens
- Provide debris screens for ACHE with doors
- Design, manufacture, deliver to site.
- Provide Field Tech Rep
- Performance Evaluation

INNOVATIVE STRUCTURE ACC

MODELING AREA (1KM X 1KM X 600M)

- SW wind predominant, coincident with 19m/s wind speed.
- Vary windscreen configuration
- Vary windscreen height and solidity
- Many iterations with Perimeter and Cruciform windscreens

INNOVATIVE STRUCTURE ACC

WINDSCREENS CONFIGURATIONS

Layout L03 4.5m - Cruciform height=8m Solidity=75%, Perimeter height=4.5m Solidity=60%

L03-4.5m, 60% solidity is considered the best for its beneficial impact in terms of fan blade loading and cost.

EFFECTIVENESS

Project Execution

- Material delivered in October 2022
- Some structural reinforcement required
- Installation April 2023
- 3 weeks duration
- Performance Evaluation after a year

INNOVATIVE STRUCTURE ACC

MANUFACTURING PROCESS

Calculation of the second of t

----- EST. 1984 -

Galebreaker®
— INDUSTRIAL —

EST. 1984 —

Calchedace

-- INDUSTRIAL ---

EST. 1984 —

Calchreaker®
— INDUSTRIAL —

— EST. 1984 —

EST. 1984 —

Performance after Windscreen Installation

PI Data

- Two sets of summer data have been shared:
- Before windscreen installation: 2021-05-15 / 2021-08-20
- After windscreen installation: 2023-05-15 / 2023-08-20
- Shared PI Data contains hourly-average for wind speed, direction, ambient air temp, ACC steam temp and more....
- VFD's were retrofitted to the ACC in 2022 so a new variable. Use summer conditions.

- No significant differences in gross power registered between 2021 and 2023 (demand?)
- Lesser wind speed during the summer compared to prior years
- The ACC performance (global Heat Transfer Coefficient UA) can be estimated looking at the temperature difference between air and steam

- Computing the difference between steam and ambient temperature it is clear how the ACC was more efficient in summer 2023 rather than in 2021
- Despite the high scattering, the linear trend lines show:
- Lower absolute temperature difference (26.8 °C vs 31.1 °C)
- Higher insensitivity to wind speed (slightly negative vs 0.225 °C/(m/s))

- Filtering the data for similar wind speed and ambient temperature it is possible to make a more quantitative comparison
- The improvement thanks to the windscreens is appreciable in terms of reduced temperature difference between steam and air
- The fitting is less effective at high ambient temperature and high wind due to the reduced number of samples

- Filtering the data for similar summer wind speed and ambient temperature it is possible to make a more quantitative comparison
- Both at cold, mild and hot temperature the windscreens reduce the temperature difference between air and steam (higher cooling efficiency) and reduce the sensitivity to wind speed

Ambient temperature = 32 °C

Conclusions

 The analysis of PI Data before and after the installation of windscreens demonstrate that:

- The CFD model of the ACC thermal power is a good tool to simulate/estimate improvements with windscreens
- The windscreens improved ACC thermal power at a variety of wind speeds and ambient temperatures.

PERFORMANCE EVALUATION AFTER WINDSCREENS

Thank You

Questions?

Galebreaker Industrial: galebreaker.com/industrial

Ergon Research: ergonresearch.it/

