

Live Performance Modelling of Energy from Waste (EfW) Facilities' ACCs to Optimise Cleaning Regimes and Maximise Electricity Generation

Ellie Baimbridge

Assistant Technical Plant Engineer Process Optimisation

31/07/2024

Summary

1. SUEZ R&R UK

2. Technical Team

- 3. Energy from Waste Introduction to the process
- 4. Air Cooled Condensers EfW impacts & variations in the fleet
- **5. ACC Efficiency Model**

The concept, development, and visualisation with site case study

6. Roll-Out to Fleet

Alternative waste management technologies

7. Challenges

Operational variation & instrumentation inaccuracies

8. Future Applications

Decarbonisation of EfWs & predictive monitoring

SUEZ recycling & recovery UK

- We are a **RESOURCE MANAGEMENT** company not a power generation company
- OPERATE & MAINTAIN EfW facilities for municipal customers (e.g. Local councils)
- **11** UK Energy from Waste Plants
- Turn WASTE into local source of RENEWABLE ENERGY
- Plant waste processing capabilities range from 55kT to 500kT per annum
- Electrical generation capability ranging from 4MW to 50MW
- SUEZ UK TOTAL EfW generating capacity is 233 MW
- Circa 2.5MT of household & commercial waste processed per annum
- >1.4 MILLION MWh electricity generated every year

31/07/2024 | ACCUG London 2024 General 6 suez

SUEZ recycling & recovery UK

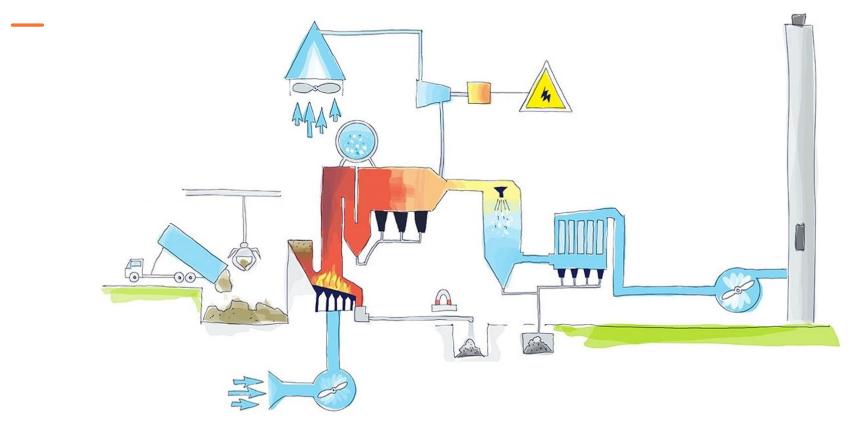
TECHNICAL TEAM provide technical support to all operational sites within the business – both processing & energy

ASSET MANAGEMENT

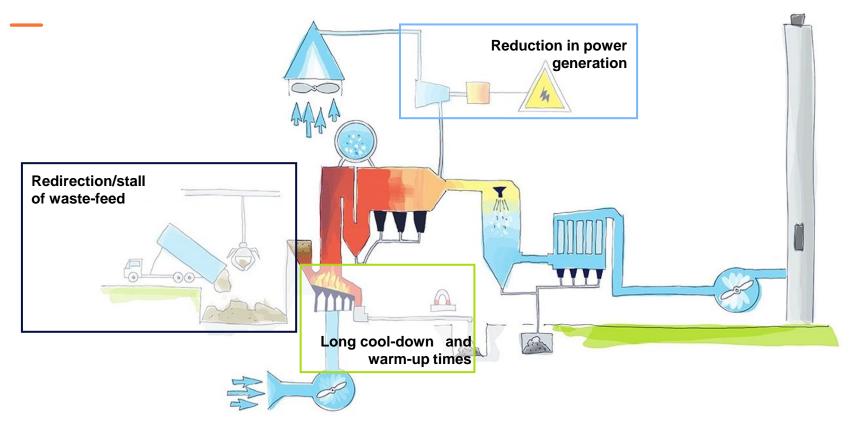
Life cycle analysesRoot cause analysesImplementation of universal asset management standards

ENGINEERING

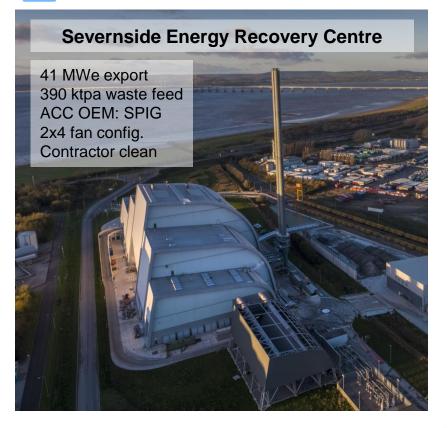
- •Mechanical, electrical, control & instrumentation support
- Outage inspection & reviews
- Commissioning test procedures


PROCESS OPTIMISATION

- Process analysis & design support for existing and emerging technology
- Information visualisation & trending
- Troubleshooting of process issues



Energy from Waste



Energy from Waste

Variation & Challenges in ACCs within our Fleet

DESIGN VARIATION

- Different ACC OEMs
- Cooling requirement differs site to site
- Array determined by site layout

CLEANING/FOULING OPTIONS

- Semi automated clean systems or contractor cleaning
- No means of evaluating efficacy of cleans

RELAYING OPERATIONAL KNOWLEDGE/CONCERNS TO MANAGEMENT

- Identifying performance degradation
- Identifying efficacy of preventative maintenance routines

Variation & Challenges in ACCs within our Fleet

Suez Tees Valley 4&5 (STV4&5)

26 MWe export 386 ktpa waste feed ACC OEM: SPIG 1x4 fan config. Semi-automatic clean

DESIGN VARIATION

- Different ACC OEMs
- Cooling requirement differs site to site
- Array determined by site layout

CLEANING/FOULING OPTIONS

- Semi automated clean systems or contractor cleaning
- No means of evaluating efficacy of cleans

RELAYING OPERATIONAL KNOWLEDGE/CONCERNS TO MANAGEMENT

- Identifying performance degradation
- Identifying efficacy of preventative maintenance routines

Kirklees EfW

12.5 MWe export 136 ktpa waste feed ACC OEM: Howdens/Lurg 1x2 fan config. Contractor cleaning

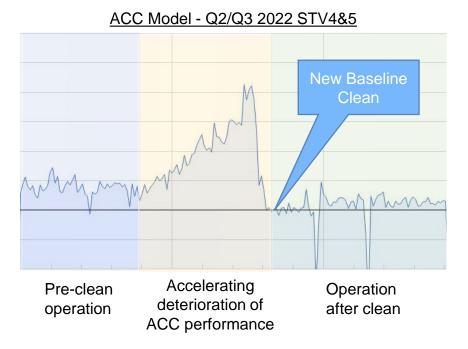
ACC EFFICIENCY MODEL

Modelling ACC Performance to:

- Improve cleaning schedules
- Identify unit defects
- Increase MW generated

Tees Valley 4&5 (STV45) – Case Study

MODELLING ACC PERFORMANCE

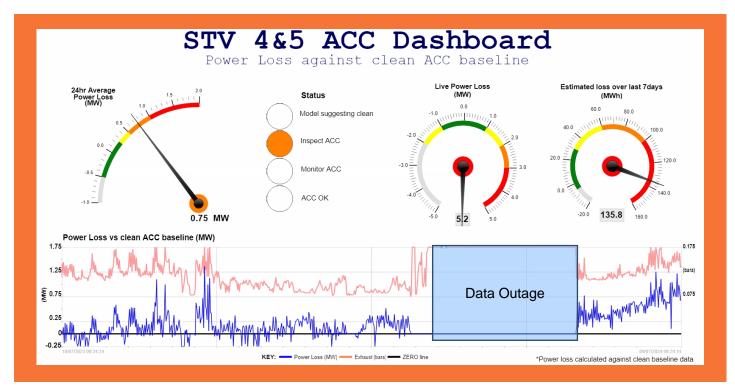

Across the fleet, fouling of ACC units leads to poor turbine vacuum.

Modelling performance degradation of ACC can improve efficacy of cleaning schedules, and MW generated by the turbine.

\Rightarrow MODEL FUNCTION

Plotting turbine power *drop* via a two-way linear regression model

- Model normalised against external ambient temperature & turbine steam flow
- Output is compared to a best performance baseline
 relating to the most successful historic ACC
 clean

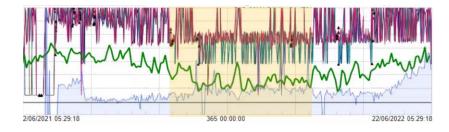


Tees Valley 4&5 (STV45) – Live Trending & Visualisation

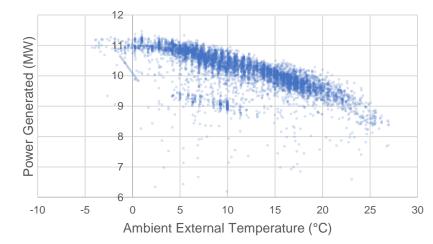
Data dashboard:

- Visualisations for site
 engineers
- Separate to DCS
- Empowering databacked conversations with operations team

Model development – Iterations & Application


COLD WEATHER OPERATION

Switch in chosen baseline data, used for:

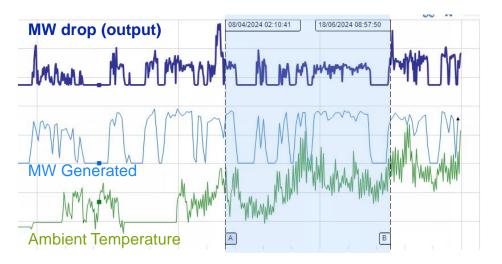

- ACC motor current ramp down in low ambient temperatures (e.g. STV4&5)
- Clear limit to ambient temperature impact on MW (e.g. Kirklees)

5-WAY LINEAR REGRESSION

- Introducing wind speed, live steam conditions, fan currents
- Application of Gram Schmidt method of six-by-six matrix solving
- Instrumentation concerns for wind speed
- Weak linear relationship for additional parameters

EcoPark Surrey – Gasifier & Anaerobic Digester (AD)

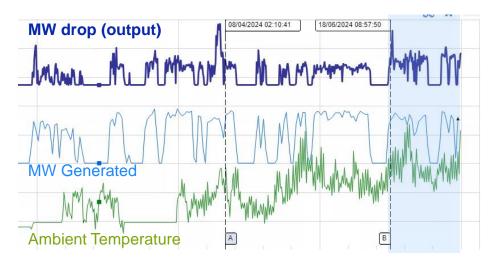
ECOPARK SURREY GASIFIER


Model roll out to differing facility technology

ACC cleaning typically via contractor clean, with no existing monitoring of ACC performance

- Intermittent operation of site
- Particulate dense environment (proximity to AD & Household Waste Recycling Centre)

- A) Semi-automatic clean system utilised
- B) Contractor clean conducted (during outage)


ECOPARK SURREY GASIFIER

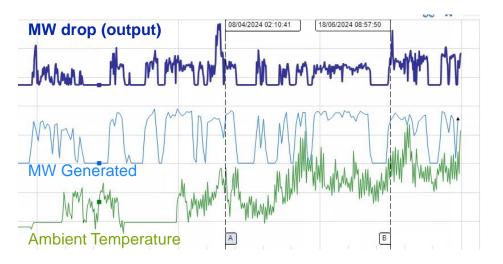
Model roll out to differing facility technology

ACC cleaning typically via contractor clean, with no existing monitoring of ACC performance

⇒ SPECIFIC MODEL FUNCTION

- Intermittent operation of site
- Particulate dense environment (proximity to AD & Household Waste Recycling Centre)

- A) Semi-automatic clean system utilised
- B) Contractor clean conducted (during outage)


ECOPARK SURREY GASIFIER

Model roll out to differing facility technology

ACC cleaning typically via contractor clean, with no existing monitoring of ACC performance

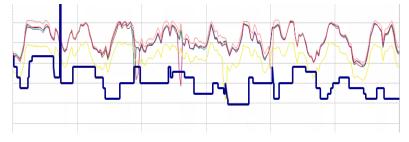
SPECIFIC MODEL FUNCTION

- Intermittent operation of site
- Particulate dense environment (proximity to AD & Household Waste Recycling Centre)

- A) Semi-automatic clean system utilised
- B) Contractor clean conducted (during outage)

ECOPARK SURREY GASIFIER

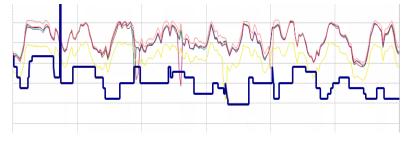
Model roll out to differing facility technology


ACC cleaning typically via contractor clean, with no existing monitoring of ACC performance

- Intermittent operation of site
- Particulate dense environment (proximity to AD & Household Waste Recycling Centre)

Challenges – Application to Different Modes of TGU Operation

Awaiting turbine upgrades, Suffolk Energy Recovery Centre would change its turbine exhaust pressure set point to mitigate overloading ACC


Blue: Turbine backpressure setpoint (summer 2023) Pink/Purple/Yellow: ACC fan motor currents

- MW generated already at max output
- Modelling MW drop not an effective method no drop occurring for increased fouling
- Turbine modifications now complete
- Application of new model possible once ACC clean completed

Challenges – Application to Different Modes of TGU Operation

Awaiting turbine upgrades, Suffolk Energy Recovery Centre would change its turbine exhaust pressure set point to mitigate overloading ACC

Blue: Turbine backpressure setpoint (summer 2023) Pink/Purple/Yellow: ACC fan motor currents

- MW generated already at max output
- Modelling MW drop not an effective method no drop occurring for increased fouling
- Turbine modifications now complete
- Application of new model possible once ACC clean completed

Challenges – Instrumentation Inaccuracies

- Ambient temperature probes not typically on maintenance routines.
- Not previously identified as control elements
- Not installed in appropriate locations (proximity to vents, sun spots, wind tunnels)

Variations of up to 15°C from local weather station readings

Future Applications at SUEZ R&R UK

DECARBONISATION – CARBON CAPTURE

Cooling duty of 1.5 - 1.8 MW/tCO2 required for retrofit carbon capture

- Water cooled condenser solutions geographically limited
- Air cooled or hybrid solutions preferred by legislators
- Deteriorating ACC performance has potential to impact future environmental compliance

NEAR FUTURE – PREDICTIVE MONITORING

- Monitoring of mechanical systems via predictive clustering algorithms
- In conjunction with process models
- Big picture of asset health guiding preventative maintenance routines

🍘 suez

THANK YOU

CONTACT

Ellie Baimbridge eleanor.baimbridge@suez.com

suez.co.uk

General