Dynamic response of large ACC fan systems

2017 ACCUG ANNUAL CONFERENCE LAS VEGAS

Jacques Muiyser, Ochse Lombard, Johan van der Spuy, Danie Els Stellenbosch University

Albert Zapke

Enexio

Dynamic Response

Background

Blade loading Full-scale measurements Wind effects Vibration frequencies Excitation reconstruction algorithm Laboratory measurements: Analysis of vibration sources Fan bridge

On-site measurements:

Platform height

On-site measurements: Shaft loads Site setup Start/Stop Bending moment

Outline

Background

On-site measurements: Blade loading

- Full-scale measurements
- Wind effects
- Vibration frequencies
- Excitation reconstruction algorithm

3 Laboratory measurements: Analysis of vibration sources

- Fan bridge
- Platform height

On-site measurements: Shaft loads

- Site setup
- Start/Stop
- Bending moment

Simulation of fan system dynamics

- Adams model
- System response
- System design

Dynamic Response

Background

On-site measurements: Blade loading

Full-scale measurements

Wind effects

Vibration frequencies

Excitation reconstruction algorithm

Laboratory measurements: Analysis

of vibration sources

Platform height

On-site measurements: Shaft loads

Site setup

Start/Stop

Bending moment

Dynamic Response

Background

algorithm

On-site measurements: Blade loading Full-scale measurements Wind effects Vibration frequencies Excitation reconstruction

Laboratory measurements: Analysis of vibration sources Fan bridge Platform height

On-site measurements:

Shaft loads

Site setup

Start/Stop

Bending moment

Simulation of fan system dynamics Adams model System response

System design

Background

Background Test Case A air-cooled condenser (ACC) fans

At the Test Case A coal-fired power stations, steam is condensed in an air-cooled condenser (ACC) by forcing ambient air through inclined heat exchangers with an array (288) of large Ø9 m, 270 kW axial flow fans situated at a height of 50 m.

Background Fan blade loading

- Each fan is suspended from a fan bridge.
- Distorted inlet air flow conditions due to winds and other fans¹as well as the downstream flow obstruction (bridge) cause varying aerodynamic loads.

¹Van der Spuy, S.J., Von Backström, T.W. and Kröger, D.G. (2009). An evaluation of simplified methods to model the perormance of axial flow fan arrays. R & D Journal of the South African Institution of Mechanical Engineering, vol. 26, pp. 12–20.

Dynamic Response

Background

On-site measurements: Blade loading Full-scale measurements Wind effects Vibration frequencies Excitation reconstruction algorithm Eaboratory measurements: Analysis of vibration sources Fan bridge Platform height On-site measurements: Shaft loads

Site setup Start/Stop

Bending moment

Simulation of fan system dynamics Adams model System response System desien

6 of 42

On-site measurements: Blade loading

Dynamic Response

Background

On-site measurements: Blade loading

Full-scale measurements Wind effects

Vibration frequencies

Excitation reconstruction algorithm

Laboratory measurements: Analysis of vibration sources Fan bridge

Platform height

On-site measurements: Shaft loads

Site setup

Start/Stop

Bending moment

Full-scale measurements²

Lagwise gauges

Flapwise gauges

Position sensor

MicroStrain V-Link

²Muiyser, J., Els, D.N.J., Van der Spuy, S.J. and Zapke. A. (2014). Measurement of air flow and blade loading at a large-scale cooling system fan. R & D Journal of the South African Institution of Mechanical Engineering, vol 30, pp 30–38

Dynamic Response

Background

On-site measurements: Blade loading

Full-scale measurements Wind effects Vibration frequencies Excitation reconstruction algorithm Laboratory

measurements: Analysis of vibration sources Fan bridge Platform height

On-site measurements: Shaft loads Site setup Start/Stop Bending moment Simulation of fan system

dynamics Adams model System response System design

8 of 42

Full-scale measurements Site setup Test Case A

Dynamic Response

Background

On-site measurements: Blade loading

Full-scale measurements

Wind effects

Vibration frequencies

Excitation reconstruction algorithm

Laboratory measurements: Analysis of vibration sources

Fan bridge Platform height

On-site measurements: Shaft loads

Site setup

Start/Stop

Bending moment

Full-scale measurements Wind effects

Dynamic Response

Background

On-site measurements: Blade loading

Full-scale measurements

Wind effects

Vibration frequencies

Excitation reconstruction algorithm

Laboratory measurements: Analysis of vibration sources Fan bridge

Platform height

On-site measurements: Shaft loads

Site setup

Start/Stop

Bending moment

Full-scale measurements Vibration frequencies

• Fast Fourier transform (FFT) showed peaks at Ω , 2Ω and $3\Omega \approx f_n$.

Dynamic Response

Background

On-site measurements: Blade loading

Full-scale measurements

Wind effects

Vibration frequencies

Excitation reconstruction algorithm

Laboratory measurements: Analysis of vibration sources

Fan bridge Platform height

On-site measurements: Shaft loads

Site setup

Start/Stop

Bending moment

Excitation reconstruction algorithm *The response of a single degree of freedom system to periodic excitation*

Consider single degree of freedom system in the figure

$$m\ddot{x}(t) + c\dot{x}(t) + kx(t) = kf(t)$$

with periodic function

$$f(t) = \frac{1}{2}a_0 + \operatorname{Re}\left(\sum_{p=1}^{\infty} A_p e^{ip\omega_0 t}\right)$$

where $A_p = \frac{2}{T} \int_0^T f(t) e^{-ip\omega_0 t} dt$

The steady state response is then

$$x(t) = \frac{1}{2}a_0 + \operatorname{Re}\left(\sum_{p=1}^{\infty} A_p G_p e^{ip\omega_0 t}\right)$$

with

$$G_p = \frac{1}{1 - \left(p\frac{\omega_0}{\omega_n}\right)^2 + i2\zeta p\frac{\omega_0}{\omega_n}}, \quad \omega_n = \sqrt{k/m}, \quad \zeta = \frac{c}{2m\omega_n}$$

Dynamic Response

Background

On-site measurements: Blade loading Full-scale measurements Wind effects Vibration frequencies

Excitation reconstruction algorithm

Laboratory measurements: Analysis of vibration sources Fan bridge

Platform height

On-site measurements: Shaft loads

Site setup

Start/Stop

Bending moment

Excitation reconstruction algorithm *Formulation*

Non-linear least-squares optimization is used to fit a Fourier series to a periodic measured response, r(t), using P harmonic terms where the variables are: $a_0, a_1, b_1, a_2, b_2, ..., a_P, b_P, \omega_0$.

$$Q(t) = r(t) - \left\{ \frac{1}{2}a_0 + \operatorname{Re}\left[\sum_{p=1}^{P} \left(a_p + ib_p\right)e^{ip\omega_0 t}\right] \right\}$$

Then for the optimum curve fit

$$(a_p^* + ib_p^*) \approx A_p^* G_p$$
 or $A_p^* \approx \frac{(a_p^* + ib_p^*)}{G_p}$

The reconstructed excitation, $f_r(t)$, is then given by

$$f_r(t) = \frac{1}{2}a_0 + \operatorname{Re}\left(\sum_{p=1}^{P} A_p^* e^{ip\omega_0 t}\right)$$

Dynamic Response

Background On-site measurements: Blade loading Full-scale measurements Wind effects Vibration frequencies Laboratory measurements: Analysis of vibration sources Fan bridge Platform height On-site measurements: Shaft loads Site setup Start/Ston Bending moment Simulation of fan system dynamics System response

(1)

(2)

(3)

Excitation reconstruction algorithm *Test Case A: Full scale flapwise bending force results*

Dynamic Response

Background

On-site measurements: Blade loading

Full-scale measurements

Wind effects

Vibration frequencies

Excitation reconstruction algorithm

Laboratory measurements: Analysis of vibration sources Fan bridge

Platform height

On-site measurements: Shaft loads

Site setup

Start/Stop

Bending moment

Simulation of fan system dynamics Adams model

System response

Excitation reconstruction algorithm

Full scale results

Results show similar excitation for both cases with a lower peak on the windward side during decreased winds.

Higher wind speed

Lower wind speed

Analysis of vibration sources Test Case X – No resonance!

Measurements recorded at a different plant, Test Case X, where $f_n \neq 3\Omega$ did not include large blade vibrations.

Full-scale measurements Test Case X – Effect of surrounding fans

Dynamic Response

Background

On-site measurements: Blade loading Full-scale measurements Wind effects Vibration frequencies Laboratory measurements: Analysis of vibration sources Fan bridge Platform height On-site measurements: Shaft loads Site setup Start/Stop Bending moment Simulation of fan system dynamics Adams model

Dynamic Response

Background

On-site measurements: Blade loading

Full-scale measurements

Wind effects

Vibration frequencies

Excitation reconstruction algorithm

Laboratory

measurements: Analysis of vibration sources

Fan bridge Platform height

On-site measurements: Shaft loads

Site setup

Start/Stop

Bending moment

Simulation of fan system dynamics

System response

System design

Laboratory measurements: Analysis of vibration sources

Analysis of vibration source *The effect of the fan bridge on fan blade vibration*³

Strain gauges were attached to a flat plate fan blade to determine the effect of bridge solidity and distance from the rotor.

 3 Work performed in conjunction with the final-year project of Nico R. Basson.

Analysis of vibration source The effect of the fan bridge on fan blade vibration

It was found that the amplitude of vibration increases with:

- Increasing flow rate
- Decreased distance between fan rotor and bridge
- Increasing bridge solidity

Dynamic Response

Background

On-site measurements: Blade loading

Full-scale measurements

Wind effects

Vibration frequencies

Excitation reconstruction algorithm

Laboratory measurements: Analysis of vibration sources

Fan bridge

Platform height

On-site measurements: Shaft loads

Site setup

Start/Stop

Bending moment

Simulation of fan system dynamics Adams model System response

Analysis of vibration source The effect of the platform height

Dynamic Response

Background

On-site measurements: Blade loading Full-scale measurements

Wind effects

Vibration frequencies

Excitation reconstruction algorithm

Laboratory measurements: Analysis of vibration sources

Fan bridge

Platform heigh

On-site measurements: Shaft loads Site setup Start/Stop Bending moment

Analysis of vibration source The effect of the platform height

- Increase of the measured vibration as the platform height is reduced from $4.5D_{fan}$ to $2.5D_{fan}$
- A slight decrease $1.5D_{fan}$, change in excitation mode

Dynamic Response

Background On-site measurements: Blade loading Full-scale measurements Wind effects Vibration frequencies Excitation reconstruction algorithm Laboratory measurements: Analysis of vibration sources Fan bridge Flatform height

On-site measurements: Shaft loads Site setup Star/Stop Bending moment Simulation of fan system dynamics Adams model System response System design

Dynamic Response

Background

On-site measurements: Blade loading

Full-scale measurements

Wind effects

Vibration frequencies

Excitation reconstruction algorithm

Laboratory

measurements: Analysis of vibration sources Fan bridge Platform height

On-site measurements: Shaft loads

Site setup

Start/Stop

Bending moment

Simulation of fan system dynamics

Adams model

System response System design

ENEXIO

On-site measurements: Shaft loads

Shaft loads Site setup Test Case A

Dynamic Response

Background

On-site measurements: Blade loading

Full-scale measurements

Wind effects

Vibration frequencies

Excitation reconstruction algorithm

Laboratory measurements: Analysis of vibration sources Fan bridge

Platform height

On-site measurements: Shaft loads

Site setup

Start/Stop

Bending moment

Simulation of fan system dynamics

Adams model

Shaft loads

Instrumentation

- Full bridge torque strain gauge
- Full bridge bending moment strain gauge ×2
- Speed sensor

Low speed shaft

Dynamic Response

Background

On-site measurements: Blade loading Full-scale measurements Wind effects Vibration frequencies Excitation reconstruction algorithm

Laboratory measurements: Analysis of vibration sources Fan bridge

Platform height

On-site measurements: Shaft loads

Site setup

Start/Stop

Bending moment

Simulation of fan system dynamics

Adams model

Shaft loads Startup Torque

Dynamic Response

Background On-site measurements: Blade loading Full-scale measurements Wind effects Excitation reconstruction algorithm Laboratory measurements: Analysis of vibration sources Fian bridge Platform height On-site measurements:

Site setup

Bending moment

Simulation of fan system dynamics Adams model System response

Shaft loads

Startup torque low inertia fan blade comparison: Test Case B

Test Case B

New generation low inertia fan blade that was tested under full scale conditions.

Dynamic Response

Background

On-site measurements: Blade loading Full-scale measurements Wind effects Vibration frequencies Excitation reconstruction algorithm

Laboratory measurements: Analysis of vibration sources Fan bridge

Platform height

On-site measurements: Shaft loads

Site setup

Start/Stop

Bending moment

Simulation of fan system dynamics

System response

Shaft loads Startup Power

Dynamic Response

Background

On-site measurements: Blade loading Full-scale measurements Wind effects Urbration frequencies Decitation reconstruction algorithm Laboratory measurements: Analysis of vibration sources Fan bridge Platform height

On-site measurements: Shaft loads

Site setup

Start/Stop

Bending moment

Simulation of fan system dynamics Adams model

System response

Shaft loads Shutdown

Dynamic Response

Background

On-site measurements: Blade loading Full-scale measurements Wind effects Vintar of requencies Excitation reconstruction algorithm Laboratory measurements: Analysis of Vibration sources Fan bridge

Platform height

On-site measurements: Shaft loads

Site setup

Start/Stop

Bending moment

Simulation of fan system dynamics Adams model

Shaft loads Shutdown Spectogram

Dynamic Response

Background

On-site measurements: Blade loading Full-scale measurements Wind effects Vibration frequencies Excitation reconstruction algorithm Laboratory measurements: Analysis of vibration sources Fan bridge Platform height On-site measurements: Shaft loads Site setup Bending moment Simulation of fan system dynamics Adams model

System response

Total force \times length (moment) on output shaft relative to gearbox Wind speed 25 m/s

- wind direction 66°
- wind direction 92°
- wind direction 115°

Dynamic Response

Background

On-site measurements: Blade loading Full-scale measurements Wind effects Urbration frequencies Excitation reconstruction algorithm Laboratory measurements: Analysis of vibration sources Fan bridge

Platform height

On-site measurements: Shaft loads

Site setup

Start/Stop

Bending moment

Simulation of fan system dynamics Adams model

System response

Shaft loads

Dynamic Response

Background On-site measurements: Blade loading Full-scale measurements Wind offects Uibration frequencies Excitation reconstruction algorithm Laboratory measurements: Analysis of vibration sources Fan bridge Platform heimt

On-site measurements: Shaft loads

Site setup Start/Stop

Bending moment

Simulation of fan system dynamics Adams model System response System desien

Forces between 4.1Hz and 4.3Hz

wind direction 66°

Forces between 6.1Hz and 6.4Hz

Dynamic Response

Background

On-site measurements: Blade loading

Full-scale measurements

Wind effects

Vibration frequencies

Excitation reconstruction algorithm

Laboratory

measurements: Analysis of vibration sources

Fan bridge Platform height

Platform neight

On-site measurements: Shaft loads

Site setup

Start/Stop

Bending momen

Forces between 4 1Hz and 4 3Hz

wind direction 92°

Dynamic Response

Background

On-site measurements: Blade loading

Full-scale measurements

Wind effects

Vibration frequencies

Excitation reconstruction algorithm

Laboratory

measurements: Analysis of vibration sources

Fan bridge

Platform height

On-site measurements: Shaft loads

Site setup

Start/Stop

Simulation of fan system dynamics Adams model System response

Forces between 4.1Hz and 4.3Hz

wind direction 115°

Forces between 6.1Hz and 6.4Hz

Dynamic Response

Background

On-site measurements: Blade loading

Full-scale measurements

Wind effects

Vibration frequencies

Excitation reconstruction algorithm

Laboratory

measurements: Analysis of vibration sources

Fan bridge Platform height

On-site measurements: Shaft loads

Site setup

Start/Stop

Bending momen

Dynamic Response

Background

On-site measurements: Blade loading

Full-scale measurements

Wind effects

Vibration frequencies

Excitation reconstruction algorithm

Laboratory

measurements: Analysis of vibration sources Fan bridge

Platform height

On-site measurements: Shaft loads

Site setup

Start/Stop

Bending moment

Simulation of fan system dynamics

Adams model

System response

System design

Simulation of fan system dynamics

Simulation of fan system dynamics Adams model

- MSC ADAMS used for the dynamic simulation of the fan system
- Flexible bodies used
- Fan blade properties selected to be the same as the finite element fan blade to provide a blade with similar vibrational characteristics as the full-scale fan blade.

Dynamic Response

Background

On-site measurements: Blade loading Full-scale measurements Wind effects Vibration frequencies

Excitation reconstruction algorithm

Laboratory measurements: Analysis of vibration sources Fan bridge

Platform height

On-site measurements: Shaft loads Site setup

Site setup Start/Stop

Bending moment

Simulation of fan system dynamics

Adams model

Simulation of fan system dynamics Vibration characteristics

- Impractical to solve eigenvalue problem
- Virtual experiment by applying a force to a model with sweep or a chirp force function and measuring the response at a point.

Linear sweep

Dynamic Response

Background On-site measurements: Blade loading Full-scale measurements Wind effects Vibration frequencies Excitation reconstruction algorithm Laboratory

measurements: Analysis of vibration sources Fan bridge Platform height

On-site measurements: Shaft loads

Site setup

Start/Stop

Bending moment

Simulation of fan system dynamics

Adams model

Simulation of fan system dynamics

ADAMS vibration characteristics

Dynamic Response

Background On-site measurements: Blade loading Full-scale measurements Whaten frequencies Excitation reconstruction algorithm Laboratory measurements: Analysis of vibration sources Fan bridge Platform height On-site measurements: Shaft loads

Site setup

Start/Stop

Bending moment

Simulation of fan system dynamics

Adams model

Simulation of fan system dynamics System vibration characteristics

Dynamic Response

Background On-site measurements: Blade loading Full-scale measurements

Wind effects

Vibration frequencies Excitation reconstruction algorithm Laboratory

measurements: Analysis of vibration sources Fan bridge Platform height

On-site measurements: Shaft loads Site setup Start/Stop

Bending moment

Simulation of fan system dynamics

Adams model

system respons

System design recommendations

Dynamic Response

Background On-site measurements: Blade loading Full-scale measurements Wind effects Vibration frequencies Excitation reconstruction algorithm Laboratory measurements: Analysis of vibration sources Fan bridge Platform height On-site measurements: Shaft loads Site setup Start/Stop Bending moment Simulation of fan system dynamics Adams model System response

41 of 42

