CFD Study of ACC Airflow and Performance Improvement Potential

Gary Mirsky - Galebreaker

Cosimo Bianchini ERGON Research

Your Guard Against the Elements

galebreaker.com/industria

Outline

- Background and Geometry
- <u>Setup</u>
- <u>Results</u>
 - Characterization of Wind Losses
 - Effects of Windscreens
 - Optimal Solution

Background

- Combined Cycle Unit 2 on 1
- Power Plant Nameplate: 578MW
- Steam Turbine Design Output: 295MW
- Commercial Operation 2008
- Goal is to increase back pressure trip limits
- Part of larger upgrade to the C.C Unit. Increase the CT output and ACC heat rejection. Mitigate wind effects on ACC performance.

Background

Plant

Background

Geometry

- 3D drawing of the plant
 - ACC (2 units 3x5 modules)
 - Buildings

Geometry

- 3D drawing of the plant
 - ACC (2 units 3x5 modules)
 - Buildings

Geometry

- 3D drawing of the plant
 - ACC (2 units 3x5 modules)
 - Buildings

Outline

- Background and Geometry
- <u>Setup</u>
- Results:
 - Characterization of Wind Losses
 - Effects of Windscreens
 - Optimal Solution

Setup

- Ambient conditions:
 - Ambient temperature = Design temperature = $35 \circ C = 308.15 \text{ K}$
 - Wind directions = 270 deg (W)
 - Wind speed = 1 and 11 m/s, 10m above the ground
- Numerical modelling based on our practice
 - Ansys Fluent v222 CFD code
 - Steady-state
 - Coupled solver
 - Ideal gas: air
 - Buoyancy forces activated
 - Turbulence Model: Standard k-e with Buoyancy effects

Modeling Details

• Wind profile:

- Far field boundary layer:
$$V(y) = V_{ref} \times \left(\frac{y}{H_{ref}}\right)^a \begin{cases} V_{ref} \\ H_{ref} \\ a \end{cases}$$

- $V_{ref} = 1$ and 11 m/s
- Wind readings are assumed at $H_{ref} = 10m$
- Power law exponent *a* is a function of ground roughness and BL stability (and of H_{ref})
 - \rightarrow Irwin 1979 suggested a value of 0.2 for stable BL over rough surfaces (http://www.webmet.com)

Modelling Details

- ACC fan model
 - Fan model implements a sudden pressure rise (p) as a function of normal air velocity (V)
 - Fan curve is extrapolated from duty point in terms of analytical functions p=f(V)
 - Fan curve is extended towards low flow rates to cover the full range of velocities

Modelling Details

- ACC bundle model
 - Bundle is modelled as a thin surface and implements:
 - ightarrow A sudden pressure (p) drop
 - ightarrow A sudden temperature (T) rise
 - Pressure drop can be expressed as a function of normal air velocity (V) through a pressure drop coefficient (k):
 - $\Delta P = pressure drop$
 - $-\rho = air density$
 - V = air velocity @bundle

$$k = \frac{\Delta P}{\frac{1}{2}\rho V^2}$$

- Bundle k coefficient can be estimated using duty point data
 - \rightarrow Overall pressure drop corresponds to a K_{total} = 31.14 (based on estimated bundle surface = 9755 $m^2)$
 - \rightarrow Usually, only part of the losses at duty point occurs on the bundle

Modelling Details

- ACC bundle model
 - Thermal behavior is modelled with a sudden temperature rise
 - Outlet air temperature is maintained fixed at:

 $T_b = T_{amb} + \Delta T = 308.15 \ K + 10.85 \ K = 319 \ K$

- Thermal power exchanged is:

$$\rightarrow \dot{Q} = mfr \cdot C_p \cdot (T_b - T_{amb}) = 276.61 \, MW$$

- \rightarrow Where:
 - MFR = 25342 kg/s
 - $C_p = 1006 \text{ J/kg/K}$

Outline

- Background and Geometry:
- <u>Setup:</u>
- <u>Results:</u>
 - <u>Chacterization of Wind Losses</u>
 - Effects of Windscreens
 - Optimal Solution

Characterization of Wind Losses (ws=1 m/s and 11 m/s,wD=270deg)

• Global performance derating in terms of mass flow rate, recirculation and thermal power

INDUSTRIAL

• Performance in terms of thermal power

1 m/s

fan id	5	4	3	2	1
3	97%	102%	101%	99%	97%
2	95%	99%	96%	96%	82%
1	84%	74%	60%	62%	67%

fan id	1	2	3	4	5
6	98%	100%	101%	101%	95%
5	82%	98%	95%	99%	95%
4	72%	74%	76%	76%	85%

11 m/s

fan id	5	4	3	2	1
3	89%	92%	90%	88%	66%
2	80%	81%	73%	81%	75%
1	37%	17%	9%	12%	44%

fan id	1	2	3	4	5
6	74%	87%	86%	86%	80%
5	79%	67%	82%	64%	82%
4	31%	5%	3%	3%	23%

gon

 $DeltaTemperature = T - T_{amb}$

Outline

- Background and Geometry
- <u>Setup</u>
- <u>Results</u>
 - Characterization of Wind Losses
 - Effects of Windscreens
 - Optimal Solution

Effects of Windscreen Configurations Tested (**ws**=11 m/s, **D**=270deg)

INDUSTRIAL

The position of the short side of cruciform windscreen is not relevant for the ccurrent wind direction, but it would be important for southerly winds

Effects of Windscreen (WS=11 m/s, WD=270deg)

L01: Perimeter M50

L03: Cruciform M75 Tall

L02: Cruciform M75 Short

L04: Combined (L01+L03)

Effects of Windscreen (**WS**=11 m/s, **WD**=270deg)

• Global performance derating in terms of mass flow rate, recirculation and thermal power

— INDUSTRIAL —

٠

Delta Temperature

8.00

7.20

Jahraa

- INDUSTRIAL -

Outline

- Background and Geometry
- <u>Setup</u>
- <u>Results</u>
 - Characterization of Wind Losses
 - Effects of Windscreens
 - Optimal Solution

Optimal solution

Windscreen layout L04: Combined (L01+L03)

Direction

Optimal Solution (**WS**=1 and 11 m/s,**WD**=270deg)

• Global performance derating in terms of mass flow rate, recirculation and thermal power

Conclusions

- A CFD model was implemented and proved to be predictive
- Asses the wind losses
- Windscreens
 - L04 is preferred to L03 because of higher protection for oscillating blade loading and resistance to the wind gusts and minor reduction in effectiveness.

Next steps

- Couple the CFD results with a thermodynamic model of the steam cycle to get the actual power output improvements
- Study the effects of wind on the oscillating blade load
- Quantify the benefits of the windscreens on the fluctuating stresses

Any Questions ??

