

Unrivaled performance. Not a slogan. A standard.

Programmatic Corrosion Mitigation in ACCs Using Anodamine

ACCUG Annual Meeting: 7/30/2024

Brian Courtright

Jeff Demattos

Installation Information

- Four Identical H-Class 1x1 CCGT
 - Two Sites
- Triple Pressure SALP HRSGs
- 2300 PSIG / 1050 F Main Steam
- Air Cooled Condenser
- 2016 Commercial Operation
- Baseload
- Chemistry Evolution
 - o **2017-2018:** Raised pH set points
 - > 9.8 in FW
 - o **2019:** OLDA vs. Anodamine side by side trial at plant 1
 - o **2020:** OLDA filming amine trial

As of 2021 all units are running Anodamine AVT(O) with Ammonia

Severe ACC Corrosion

Chemistry was root cause of these issues

- Majority of ACC tube inlets were DHACI 3/4 and DHACI B/C in the lower ducts
- Plugged condensate, feed pump, and main/reheat strainers
 - Plant shutdown to clean out
- Bound up main and reheat control valves
- False trips due to plugged level sensors
- Stuck attemperation valves/no steam temp control
- Solid particle erosion
 - High pressure drains
 - Globe valves turning into toothpicks
 - Ruptures of drain header
 - Collapse of drain header standpipe
 - Service valves rebuilt 2x per year
 - Steam turbine degradations

Over 2000 hours of lost availability in the first 3 years of operation!

Trial Goal: Decrease iron corrosion transport

Trial Results - Unit 10 Total Iron

Unit 10 Sample Locations

	Unit 10 Total Ire	on Values (ppb)	% Decrease		
	Historical	OLDA Trial	Anodamine	Anodamine vs Historical	Anodamine vs OLDA
Condensate	27	18	5	81%	72%
LP Drum	137	42	11	92%	74%
IP Drum	19	30	2	89%	93%
HP Drum	5	6	1	80%	83%

Trial Results - Unit 20 Total Iron

Unit 20 Total Iron Values

Unit 20 Sample Locations

Unit 20 Total Iron Values (ppb)				% Decrease	
	Historical	OLDA Trial	Anodamine	Anodamine vs Historical	Anodamine vs OLDA
Condensate	10	12	4	60%	67%
LP Drum	175	<u>434</u>	4	98%	99%
IP Drum	47	<u>527</u>	2	96%	100%
HP Drum	11	67	3	73%	96%

Millipore Sample - OLDA vs Anodamine Trial

Anodamine

Total Iron - Millipore

Before Anodamine

After Anodamine

ACC:Before and After Anodamine

OLDA-type FFA

DHACI 4

AVT-O Anodamine

DHACI 1/2

ACC:Before and After Anodamine

OLDA-type FFA

DHACI 4

AVT-O Anodamine

DHACI 1/2

DHACI C

DHACI A/B

DHACI C

DHACI B

DHACI C

DHACI C

LP Steam Turbine

SPE and Anodamine

ANODAMINE

- Both stations (identical units) have a history of solid particle erosion (SPE) on HP steam turbine equipment, deterioration in turbine performance and deposit causing sticking valves with traditional AVT-O treatment. Root cause was determined to be steam oxide growth and exfoliation.
- OLDA treated units continued to have steam oxide growth and exfoliation issues
- Since Anodamine treatment, exfoliation and related issues have disappeared
- 1 unit had an Anodamine pump issue and did not dose for several months
 - O Exfoliation caused a reheat bypass valve failure in 4/2023
 - Once Anodamine dosing was corrected there has not been any additional issues

FFA Risks

Gunk balls/Slime Trail

- Found in the TED and **are still present today**
- Caused daily plant shutdowns due to clogging of condensate pump strainers
 - 16,000 MWh were lost!

Online sensors

- Online pH measurements
 - Doesn't match conductivity
- Sodium analyzers

2020 Inspection - TED

2025 Inspection - TED

16,000 MWh Lost Due to Fouled Strainers - OLDA

Condensate strainers were plugging up after gunk balls were noticed

- After fall 2020 outage condensate pump strainers were plugging daily
- Daily **50% load reductions**
- All units switched to Anodamine on March 2021
- Plugging stopped 3 weeks after switching to Anodamine

Load Decrease

pH is Not Enough

Anodamine Success

- Anodamine was able to reduce total iron by
 ~80%
- Plant reliability at 100%
 - No shutdowns due to corrosion related issues or failures
- No negative side effects
 - Online instrumentation
 - No gunk balls
 - No increase is CC or DCACE
 - Non-toxic
- ACC tube inlets corrosion index improved from a 4 to a 1-2
- Lower ducts improved from a B-C to an A

Questions