Mechanical Design of Axial Flow Fans for Air-Cooled Condensers

John Moore

Ryan Lodder

Anthony McCollum

Challenges

- Unique demands in ACC applications:
 - Size
 - Mechanical Stress both Static and Dynamic
 - Noise
 - Assembly and Maintenance
 - Efficiency
- Fan needs to meet the required performance, for the life of the system

Design Process Overview

- 1. Define Objectives
- 2. Aerodynamic Design
- 3. Structural Design
- 4. Analysis
- 5. Testing and Validation
- 6. Repeat.....

Design Objectives

- High aerodynamic efficiency to reduce energy consumption and improve overall system performance
- Robust structural design to withstand both expected static loads and realistic dynamic forces
- Fatigue resistance to ensure long service life under real-world operating conditions
- Material selection to avoid corrosion and provide long service life
- Ease of assembly and installation for smooth integration into customer systems
- Minimal maintenance requirements to reduce downtime and total lifecycle cost

Aerodynamic Design

- Capability for desired airflow volume and static pressure at operating rotational speed
- Optimized blade geometry for airflow behavior, from root to tip
 - Chord length
 - Angle of attack

Aerodynamic Design

Aerodynamic Design – Uniform Flow

Generally uniform flow across the length of the blade

Reduces turbulence, localized inefficiencies and mechanical imbalances

Structural Design

Can be analyzed as a cantilevered beam

Use expected operating conditions to calculate loads

Structural Design – Static Load Calculations

Use: Known fan characteristics and running conditions

To determine: Pressures, velocities, thrust load, and load per blade

Fan Diameter:	34 ft	10.4 m
Hub Diameter:	96 inches	2.44 m
No. Blades:	7	
RPM:	112	
Tip Speed:	11,963 ft/min	60.77 m/sec
Density Ratio:	1	
Flow:	1,500,000 ACFM	708 m³/sec
Static Pressure:	.82" H ₂ O	204 Pa

Free Area of Fan:	857.7 ft ²
Air Velocity:	1749.0 ft/min
Velocity Pressure:	0.19" H ₂ O
Total Pressure:	1.01" H ₂ O
Axial Thrust:	4506 lb _f
Force per Blade:	643.8 lb _f
Distributed Load:	49.5 lb _f /ft

79.7 m²

8.88 m/s

47.3 Pa

251.3 Pa

20044 N

2865 N

723 N/m

Structural Design – Static Load

Structural Design – Static Load

Structural Design – Dynamic Load

- Perfectly ideal environment = perfectly constant (static) air load
- Real world dynamics:
 - Crosswinds
 - Flow obstructions
 - System-induced vibrations

Structural Design

- Balances strength, efficiency, practicality
- 5052 Marine Alloy aluminum skin and spars
 - Proven in over 60 years of fan design
- Lightweight support towards tip
- Robust support at root
- Allows individual blade installation

Structural Design

 Very similar in materials and structure to the airplane that brought most of you to Dallas

Design Stress Analysis – FEA

- Each major component group analyzed with realistic loading
 - Made possible through simplified interfaces and known boundary conditions
- Mesh generated for parts, focusing on critical geometry

Design Stress Analysis – FEA

- Component groups analyzed conservatively
 - Ex: Spars without skin adding additional support
 (~50% added strength)
- Each component evaluated and design refined
 - Plate thickness
 - Reinforcement layouts
 - Fastener patterns
 - Mating interfaces

Design Stress Analysis – FEA

Locations of Stress concentration are analyzed further

Designing for Infinite Life

- All stresses need to be safely below fatigue strength to prevent crack initiation
 - One week at 112 RPM yields more than 1 million cycles
 - "Infinite" life means enduring hundreds of millions of cycles
- Account for turbulence, system dynamics, and intermittent overloading

Designing for Infinite Life

Validation through Physical Testing

- Two mechanical tests: "Fatigue" and "Life"
- Both test and validate mechanical strength and fatigue resistance
- Both impose amplified stress to simulate long term operating stress in compressed timeframe

Physical Fatigue Testing

- Point load applied to component/group, with DC preload and AC cycling
- Simulates a particular stress level at a particular point
- Provides rapid feedback on design
- Controlled and repeatable for validating components

Physical Fatigue Testing

Physical Fatigue Testing

Physical Life Testing

- Fan assembly testing with increased power per blade
- Induces all natural stresses: aerodynamic, centripetal, torsional
- Target number of high stress cycles as determined by Acceleration Factor.
 - Ex: 60 days of Life Testing equivalent to 10 years of operation

Acceleration Factor =
$$\left(\frac{70 \text{ [bhp]}}{25 \text{ [bhp]}}\right)^4 = 61.5$$

Accelerated Life Test = $\frac{3650 \text{ [days]}}{61.5} = 59.4 \text{ [days]}$

- Critical locations strain gaged and monitored during test
- Aerodynamic performance confirmed

Physical Life Testing

Stress measured and plotted on Goodman Diagram

 Confirmed "infinite life" even under amplified loading, with conservative factor of 3 margin

Design Iteration and Improvements

- Vulnerable points identified
- Design adjustments can be made:
 - Part geometry
 - Fastener patterns
 - Reinforcements
 - Material selection
- Quick iterations of: Design → Analyze → Test → Redesign
- Improvements always possible

Conclusion

- Complete engineered solution to meet the demands of ACCs
- Design process that validates Design Objectives
 - ✓ High aerodynamic efficiency
 - ✓ Structural design that holds designed loads
 - ✓ Fatigue resistance for long life
 - ✓ Corrosion resistant materials
 - ✓ Easy assembly and installation
 - ✓ Low maintenance
- Proven reliability in the field

Questions

More Information

moorefans.com/resources/tech-notes-engineering-papers/

